-
1
-
-
7444220645
-
Electric field in atomically thin carbon films
-
DOI 10.1126/science.1102896
-
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666-9 (Pubitemid 39440910)
-
(2004)
Science
, vol.306
, Issue.5696
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
2
-
-
36149007340
-
The band theory of graphite
-
10.1103/PhysRev.71.622 0031-899X
-
Wallace P R 1947 The band theory of graphite Phys. Rev. 71 622-34
-
(1947)
Phys. Rev.
, vol.71
, pp. 622-634
-
-
Wallace, P.R.1
-
4
-
-
78751538441
-
Advanced mechanical properties of graphene paper
-
10.1063/1.3528213 0021-8979 014306
-
Ranjbartoreh A R, Wang B, Shen X and Wang G 2011 Advanced mechanical properties of graphene paper J. Appl. Phys. 109 014306
-
(2011)
J. Appl. Phys.
, vol.109
-
-
Ranjbartoreh, A.R.1
Wang, B.2
Shen, X.3
Wang, G.4
-
5
-
-
0000399715
-
Tight-binding model for the electronic-properties of simple hexagonal graphite
-
10.1103/PhysRevB.44.13237 0163-1829 B
-
Charlier J C, Michenaud J P, Gonze X and Vigneron J P 1991 Tight-binding model for the electronic-properties of simple hexagonal graphite Phys. Rev. B 44 13237-49
-
(1991)
Phys. Rev.
, vol.44
, pp. 13237-13249
-
-
Charlier, J.C.1
Michenaud, J.P.2
Gonze, X.3
Vigneron, J.P.4
-
6
-
-
77949958392
-
Bandgap opening in graphene induced by patterned hydrogen adsorption
-
10.1038/nmat2710 1476-1122
-
Balog R et al 2010 Bandgap opening in graphene induced by patterned hydrogen adsorption Nature Mater. 9 315-9
-
(2010)
Nature Mater.
, vol.9
, pp. 315-319
-
-
Balog, R.1
-
7
-
-
73449143141
-
Bandgap engineering of graphene: A density functional theory study
-
10.1063/1.3276068 0003-6951 252104
-
Liu L and Shen Z 2009 Bandgap engineering of graphene: a density functional theory study Appl. Phys. Lett. 95 252104
-
(2009)
Appl. Phys. Lett.
, vol.95
-
-
Liu, L.1
Shen, Z.2
-
8
-
-
77955698520
-
Topological defects in graphene: Dislocations and grain boundaries
-
10.1103/PhysRevB.81.195420 1098-0121 B 195420
-
Yazyev O V and Louie S G 2010 Topological defects in graphene: dislocations and grain boundaries Phys. Rev. B 81 195420
-
(2010)
Phys. Rev.
, vol.81
-
-
Yazyev, O.V.1
Louie, S.G.2
-
9
-
-
59949088258
-
Charge transport in disordered graphene-based low dimensional materials
-
10.1007/s12274-008-8043-2 1998-0124
-
Cresti A, Nemec N, Biel B, Niebler G, Triozon F, Cuniberti G and Roche S 2008 Charge transport in disordered graphene-based low dimensional materials Nano Res. 1 361-94
-
(2008)
Nano Res.
, vol.1
, pp. 361-394
-
-
Cresti, A.1
Nemec, N.2
Biel, B.3
Niebler, G.4
Triozon, F.5
Cuniberti, G.6
Roche, S.7
-
10
-
-
34547334459
-
Energy band-gap engineering of graphene nanoribbons
-
DOI 10.1103/PhysRevLett.98.206805
-
Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Energy band-gap engineering of graphene nanoribbons Phys. Rev. Lett. 98 206805 (Pubitemid 47139572)
-
(2007)
Physical Review Letters
, vol.98
, Issue.20
, pp. 206805
-
-
Han, M.Y.1
Ozyilmaz, B.2
Zhang, Y.3
Kim, P.4
-
11
-
-
65549101628
-
Improving gas sensing properties of graphene by introducing dopants and defects: A first-principles study
-
10.1088/0957-4484/20/18/185504 0957-4484 185504
-
Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L and Peng Y 2009 Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study Nanotechnology 20 185504
-
(2009)
Nanotechnology
, vol.20
-
-
Zhang, Y.-H.1
Chen, Y.-B.2
Zhou, K.-G.3
Liu, C.-H.4
Zeng, J.5
Zhang, H.-L.6
Peng, Y.7
-
13
-
-
71949129631
-
Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study
-
10.1063/1.3272008 0003-6951 232105
-
Dai J, Yuan J and Giannozzi P 2009 Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study Appl. Phys. Lett. 95 232105
-
(2009)
Appl. Phys. Lett.
, vol.95
-
-
Dai, J.1
Yuan, J.2
Giannozzi, P.3
-
14
-
-
66249123595
-
N-doping of graphene through electrothermal reactions with ammonia
-
10.1126/science.1170335 0036-8075
-
Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J and Dai H 2009 N-doping of graphene through electrothermal reactions with ammonia Science 324 768-71
-
(2009)
Science
, vol.324
, pp. 768-771
-
-
Wang, X.1
Li, X.2
Zhang, L.3
Yoon, Y.4
Weber, P.K.5
Wang, H.6
Guo, J.7
Dai, H.8
-
15
-
-
40049093097
-
Chemically derived, ultrasmooth graphene nanoribbon semiconductors
-
DOI 10.1126/science.1150878
-
Li X, Wang X, Zhang L, Lee S and Dai H 2008 Chemically derived, ultrasmooth graphene nanoribbon semiconductors Science 319 1229-32 (Pubitemid 351323015)
-
(2008)
Science
, vol.319
, Issue.5867
, pp. 1229-1232
-
-
Li, X.1
Wang, X.2
Zhang, L.3
Lee, S.4
Dai, H.5
-
16
-
-
77954242821
-
Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur
-
10.1016/j.cplett.2010.04.038 0009-2614
-
Denis P A 2010 Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur Chem. Phys. Lett. 492 251-7
-
(2010)
Chem. Phys. Lett.
, vol.492
, pp. 251-257
-
-
Denis, P.A.1
-
18
-
-
84866314866
-
Exploring hydrogenation and fluorination in curved 2D carbon systems: A density functional theory study on corannulene
-
10.1021/jp3049636 1089-5639 A
-
Dos Santos R B, Rivelino R, Mota F D B and Gueorguiev G K 2012 Exploring hydrogenation and fluorination in curved 2D carbon systems: a density functional theory study on corannulene J. Phys. Chem. A 116 9080-7
-
(2012)
J. Phys. Chem.
, vol.116
, pp. 9080-9087
-
-
Dos Santos, R.B.1
Rivelino, R.2
Mota, F.D.B.3
Gueorguiev, G.K.4
-
19
-
-
79952036281
-
Band engineering in graphene with superlattices of substitutional defects
-
10.1021/jp109741s 1932-7447 C
-
Casolo S, Martinazzo R and Tantardini G F 2011 Band engineering in graphene with superlattices of substitutional defects J. Phys. Chem. C 115 3250-6
-
(2011)
J. Phys. Chem.
, vol.115
, pp. 3250-3256
-
-
Casolo, S.1
Martinazzo, R.2
Tantardini, G.F.3
-
20
-
-
79952260890
-
Graphene nanoribbons by chemists: Nanometer-sized, soluble, and defect-free
-
10.1002/anie.201006593 1433-7851
-
Doessel L, Gherghel L, Feng X and Muellen K 2011 Graphene nanoribbons by chemists: nanometer-sized, soluble, and defect-free Angew. Chem. Int. Edn 50 2540-3
-
(2011)
Angew. Chem. Int. Edn
, vol.50
, pp. 2540-2543
-
-
Doessel, L.1
Gherghel, L.2
Feng, X.3
Muellen, K.4
-
21
-
-
77954904482
-
Atomically precise bottom-up fabrication of graphene nanoribbons
-
10.1038/nature09211 0028-0836
-
Cai J et al 2010 Atomically precise bottom-up fabrication of graphene nanoribbons Nature 466 470-3
-
(2010)
Nature
, vol.466
, pp. 470-473
-
-
Cai, J.1
-
22
-
-
11744334526
-
New one-dimensional conductors - Graphitic microtubules
-
10.1103/PhysRevLett.68.1579 0031-9007
-
Hamada N, Sawada S and Oshiyama A 1992 New one-dimensional conductors - graphitic microtubules Phys. Rev. Lett. 68 1579-81
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 1579-1581
-
-
Hamada, N.1
Sawada, S.2
Oshiyama, A.3
-
24
-
-
33751110207
-
Half-metallic graphene nanoribbons
-
DOI 10.1038/nature05180, PII NATURE05180
-
Son Y-W, Cohen M L and Louie S G 2006 Half-metallic graphene nanoribbons Nature 444 347-9 (Pubitemid 44764106)
-
(2006)
Nature
, vol.444
, Issue.7117
, pp. 347-349
-
-
Son, Y.-W.1
Cohen, M.L.2
Louie, S.G.3
-
25
-
-
0000781318
-
Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
-
10.1103/PhysRevB.54.17954 0163-1829 B
-
Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Edge state in graphene ribbons: nanometer size effect and edge shape dependence Phys. Rev. B 54 17954-61
-
(1996)
Phys. Rev.
, vol.54
, pp. 17954-17961
-
-
Nakada, K.1
Fujita, M.2
Dresselhaus, G.3
Dresselhaus, M.S.4
-
26
-
-
4243943295
-
Generalized gradient approximation made simple
-
10.1103/PhysRevLett.77.3865 0031-9007
-
Perdew J P, Burke K and Ernzerhof M 1997 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865-8
-
(1997)
Phys. Rev. Lett.
, vol.77
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
27
-
-
0028763270
-
Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements
-
10.1088/0953-8984/6/40/015 0953-8984
-
Kresse G and Hafner J 1994 Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements J. Phys.: Condens. Matter 6 8245-57
-
(1994)
J. Phys.: Condens. Matter
, vol.6
, pp. 8245-8257
-
-
Kresse, G.1
Hafner, J.2
-
28
-
-
33847690144
-
The rise of graphene
-
DOI 10.1038/nmat1849, PII NMAT1849
-
Geim A K and Novoselov K S 2007 The rise of graphene Nature Mater. 6 183-91 (Pubitemid 46353764)
-
(2007)
Nature Materials
, vol.6
, Issue.3
, pp. 183-191
-
-
Geim, A.K.1
Novoselov, K.S.2
-
29
-
-
36649018742
-
Quantum critical scaling in graphene
-
DOI 10.1103/PhysRevLett.99.226803
-
Sheehy D E and Schmalian J 2007 Quantum critical scaling in graphene Phys. Rev. Lett. 99 226803 (Pubitemid 350198425)
-
(2007)
Physical Review Letters
, vol.99
, Issue.22
, pp. 226803
-
-
Sheehy, D.E.1
Schmalian, J.2
-
30
-
-
40849085075
-
First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges
-
10.1016/j.carbon.2008.01.006 0008-6223
-
Yu S S, Zheng W T, Wen Q B and Jiang Q 2008 First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges Carbon 46 537-43
-
(2008)
Carbon
, vol.46
, pp. 537-543
-
-
Yu, S.S.1
Zheng, W.T.2
Wen, Q.B.3
Jiang, Q.4
-
31
-
-
35648941251
-
Electronic structure of heavily doped graphene: The role of foreign atom states
-
10.1103/PhysRevB.76.161406 1098-0121 B 161406
-
Calandra M and Mauri F 2007 Electronic structure of heavily doped graphene: the role of foreign atom states Phys. Rev. B 76 161406
-
(2007)
Phys. Rev.
, vol.76
-
-
Calandra, M.1
Mauri, F.2
-
32
-
-
66449118468
-
Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties
-
10.1021/nl803279t 1530-6984
-
Wei D, Liu Y, Wang Y, Zhang H, Huang L and Yu G 2009 Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties Nano Lett. 9 1752-8
-
(2009)
Nano Lett.
, vol.9
, pp. 1752-1758
-
-
Wei, D.1
Liu, Y.2
Wang, Y.3
Zhang, H.4
Huang, L.5
Yu, G.6
-
33
-
-
72049105359
-
Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation
-
10.1103/PhysRevLett.103.246804 0031-9007 246804
-
Riedl C, Coletti C, Iwasaki T, Zakharov A A and Starke U 2009 Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation Phys. Rev. Lett. 103 246804
-
(2009)
Phys. Rev. Lett.
, vol.103
-
-
Riedl, C.1
Coletti, C.2
Iwasaki, T.3
Zakharov, A.A.4
Starke, U.5
-
34
-
-
33845998961
-
Quasiparticle dynamics in graphene
-
10.1038/nphys477 1745-2473
-
Bostwick A, Ohta T, Seyller T, Horn K and Rotenberg E 2007 Quasiparticle dynamics in graphene Nature Phys. 3 36-40
-
(2007)
Nature Phys.
, vol.3
, pp. 36-40
-
-
Bostwick, A.1
Ohta, T.2
Seyller, T.3
Horn, K.4
Rotenberg, E.5
-
35
-
-
84867063282
-
Electronic and vibrational signatures of Stone-Wales defects in graphene: First-principles analysis
-
10.1103/PhysRevB.86.165401 1098-0121 B 165401
-
Shirodkar S and Waghmare U 2012 Electronic and vibrational signatures of Stone-Wales defects in graphene: first-principles analysis Phys. Rev. B 86 165401
-
(2012)
Phys. Rev.
, vol.86
-
-
Shirodkar, S.1
Waghmare, U.2
-
36
-
-
27744582040
-
Materials Science: Erasing electron mass
-
DOI 10.1038/438168a, PII 438168
-
Kane C L 2005 Materials science - erasing electron mass Nature 438 168 (Pubitemid 41599858)
-
(2005)
Nature
, vol.438
, Issue.7065
, pp. 168-170
-
-
Kane, C.L.1
|