메뉴 건너뛰기




Volumn 124, Issue 13, 2013, Pages 1601-1608

Hyperspectral and panchromatic image fusion using unmixing-based constrained nonnegative matrix factorization

Author keywords

Constrained nonnegative matrix factorization (CNMF); Hyperspectral image fusion; Projected gradient algorithm; Spectra unmixing

Indexed keywords

CONSTRAINED OPTIMI-ZATION PROBLEMS; HIGH SPECTRAL RESOLUTION; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL IMAGE FUSIONS; IMAGE FUSION TECHNIQUES; NONNEGATIVE MATRIX FACTORIZATION; PROJECTED GRADIENT; UNMIXING;

EID: 84877693820     PISSN: 00304026     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijleo.2012.04.022     Document Type: Article
Times cited : (15)

References (31)
  • 2
    • 0036821708 scopus 로고    scopus 로고
    • Context-driven fusion of high spatial and spectral resolution images based on oversampled multi-resolution analysis
    • B. Aiazzi, L. Alparone, S. Baronti, and A. Garzelli Context-driven fusion of high spatial and spectral resolution images based on oversampled multi-resolution analysis IEEE Trans. Geosci. Remote Sens. 40 10 2002 2300 2312
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.10 , pp. 2300-2312
    • Aiazzi, B.1    Alparone, L.2    Baronti, S.3    Garzelli, A.4
  • 3
    • 0028742731 scopus 로고
    • Geometric mixture analysis of imaging spectrometry data
    • J.W. Boardman Geometric mixture analysis of imaging spectrometry data IEEE Int. Geosci. Remote Sens. Symp. 4 1994 2369 2371
    • (1994) IEEE Int. Geosci. Remote Sens. Symp. , vol.4 , pp. 2369-2371
    • Boardman, J.W.1
  • 4
    • 67650263854 scopus 로고    scopus 로고
    • Merging hyperspectral and panchromatic image data: qualitative and quantitative analysis
    • M. Cetin, and N. Musaolu Merging hyperspectral and panchromatic image data: qualitative and quantitative analysis Int. J. Remote Sens. 30 7 2009 1779 1804
    • (2009) Int. J. Remote Sens. , vol.30 , Issue.7 , pp. 1779-1804
    • Cetin, M.1    Musaolu, N.2
  • 5
    • 38349054314 scopus 로고    scopus 로고
    • Multilayer nonnegative matrix factorization using projected gradient approaches
    • A. Cichocki, and R. Zdunek Multilayer nonnegative matrix factorization using projected gradient approaches Int. J. Neural Syst. 17 6 2007 431 446
    • (2007) Int. J. Neural Syst. , vol.17 , Issue.6 , pp. 431-446
    • Cichocki, A.1    Zdunek, R.2
  • 6
    • 0034248782 scopus 로고    scopus 로고
    • An information theoretic-based approach to spectral variability, similarity and discriminability for hyperspectral image analysis
    • C.I. Chang An information theoretic-based approach to spectral variability, similarity and discriminability for hyperspectral image analysis IEEE Trans. Inf. Theory 46 5 2000 1927 1932
    • (2000) IEEE Trans. Inf. Theory , vol.46 , Issue.5 , pp. 1927-1932
    • Chang, C.I.1
  • 7
    • 0025919780 scopus 로고
    • Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic
    • P.S. Chavez, S.C. Slides, and J.A. Anderson Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic Photogr. Eng. Remote Sens. 57 3 1991 295 303
    • (1991) Photogr. Eng. Remote Sens. , vol.57 , Issue.3 , pp. 295-303
    • Chavez, P.S.1    Slides, S.C.2    Anderson, J.A.3
  • 8
    • 39749177755 scopus 로고    scopus 로고
    • Theoretical analysis of an information-based quality measure for image fusion
    • Y. Chen, Z. Xue, and R.S. Blum Theoretical analysis of an information-based quality measure for image fusion Inf. Fus. 2 2008 161 175
    • (2008) Inf. Fus. , vol.2 , pp. 161-175
    • Chen, Y.1    Xue, Z.2    Blum, R.S.3
  • 9
    • 84877715854 scopus 로고    scopus 로고
    • China Centre for Resources Satellite Data and Application
    • China Centre for Resources Satellite Data and Application, http://www.cresda.com.
  • 10
    • 80455147540 scopus 로고    scopus 로고
    • Image fusion and image quality assessment of fused images
    • M. Deshmukh, and U. Bhosale Image fusion and image quality assessment of fused images Int. J. Image Process. 4 5 2010 484 508
    • (2010) Int. J. Image Process. , vol.4 , Issue.5 , pp. 484-508
    • Deshmukh, M.1    Bhosale, U.2
  • 11
    • 79955616352 scopus 로고    scopus 로고
    • An IHS-based fusion for color distortion reduction and vegetation enhancement in IKONOS imagery
    • M.C. El-Mezouar, N. Taleb, K. Kpalma, and J. Ronsin An IHS-based fusion for color distortion reduction and vegetation enhancement in IKONOS imagery IEEE Trans. Geosci. Remote Sens. 49 5 2011 1590 1602
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.5 , pp. 1590-1602
    • El-Mezouar, M.C.1    Taleb, N.2    Kpalma, K.3    Ronsin, J.4
  • 12
    • 84877700183 scopus 로고    scopus 로고
    • Google Map, http://ditu.google.cn/maps.
    • Google Map
  • 13
    • 0033225639 scopus 로고    scopus 로고
    • Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions
    • G. Healey, and D. Slater Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions IEEE Trans. Geosci. Remote Sens. 37 6 1999 2706 2717
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.6 , pp. 2706-2717
    • Healey, G.1    Slater, D.2
  • 15
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • S. Jia, and Y. Qian Constrained nonnegative matrix factorization for hyperspectral unmixing IEEE Trans. Geosci. Remote Sens. 47 1 2009 161 173
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 16
    • 8144231500 scopus 로고    scopus 로고
    • A survey of spectral unmixing algorithms
    • N. Keshava A survey of spectral unmixing algorithms Lincoln Lab. J. 14 1 2003 55 78
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 55-78
    • Keshava, N.1
  • 17
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee, and H.S. Seung Learning the parts of objects by non-negative matrix factorization Nature 401 1999 788 791
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 18
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for non-negative matrix factorization
    • C.J. Lin Projected gradient methods for non-negative matrix factorization Neural Comput. 19 10 2007 2756 2779
    • (2007) Neural Comput. , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.J.1
  • 19
    • 17644371466 scopus 로고    scopus 로고
    • Hyperspectral image processing for automatic target detection applications
    • D. Manolakis, D. Marden, and G.A. Shaw Hyperspectral image processing for automatic target detection applications Lincoln Lab. J. 14 1 2003 79 116
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 79-116
    • Manolakis, D.1    Marden, D.2    Shaw, G.A.3
  • 20
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • J.M.P. Nascimento, and J.M.B. Dias Vertex component analysis: a fast algorithm to unmix hyperspectral data IEEE Trans. Geosci. Remote Sens. 43 4 2005 898 910
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 21
    • 0027334036 scopus 로고
    • Merging multispectral and panchromatic SPOT images with respect to the radiometric properties of the sensor
    • A. Pellemans, R. Jordans, and R. Allewijn Merging multispectral and panchromatic SPOT images with respect to the radiometric properties of the sensor Photogr. Eng. Remote Sens. 59 1 1993 81 87
    • (1993) Photogr. Eng. Remote Sens. , vol.59 , Issue.1 , pp. 81-87
    • Pellemans, A.1    Jordans, R.2    Allewijn, R.3
  • 22
    • 61349131482 scopus 로고    scopus 로고
    • Assessment of image fusion procedures using entropy, image quality, and multispectral
    • W. Roberts, J.V. Aardt, and F. Ahmed Assessment of image fusion procedures using entropy, image quality, and multispectral J. Appl. Remote Sens. 2 2008 023522
    • (2008) J. Appl. Remote Sens. , vol.2 , pp. 023522
    • Roberts, W.1    Aardt, J.V.2    Ahmed, F.3
  • 23
    • 61349131482 scopus 로고    scopus 로고
    • Assessment of image fusion procedures using entropy, image quality, and multispectral classification
    • J.W. Roberts, J. Van Aardt, and F. Ahmed Assessment of image fusion procedures using entropy, image quality, and multispectral classification J. Appl. Remote Sens. 1 2008 023522
    • (2008) J. Appl. Remote Sens. , vol.1 , pp. 023522
    • Roberts, J.W.1    Van Aardt, J.2    Ahmed, F.3
  • 24
    • 12844252952 scopus 로고    scopus 로고
    • Spectral imaging for remote sensing
    • G.A. Shaw, and H.K. Burke Spectral imaging for remote sensing Lincoln Lab. J. 14 1 2003 3 28
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 3-28
    • Shaw, G.A.1    Burke, H.K.2
  • 25
    • 0032030453 scopus 로고    scopus 로고
    • Fusion by the IHS transform: should we use cylindrical or spherical coordinates
    • E.M. Schetselaar Fusion by the IHS transform: should we use cylindrical or spherical coordinates Int. J. Remote Sens. 19 4 1998 759 765
    • (1998) Int. J. Remote Sens. , vol.19 , Issue.4 , pp. 759-765
    • Schetselaar, E.M.1
  • 26
    • 39449128655 scopus 로고    scopus 로고
    • The performance of Maximum likelihood spectral angle mapper neural network and decision tree classifiers in hyperspectral image analysis
    • H.Z.M. Shafri, A. Suhaili, and S. Manso The performance of Maximum likelihood spectral angle mapper neural network and decision tree classifiers in hyperspectral image analysis J. Comput. Sci. 3 6 2007 419 423
    • (2007) J. Comput. Sci. , vol.3 , Issue.6 , pp. 419-423
    • Shafri, H.Z.M.1    Suhaili, A.2    Manso, S.3
  • 27
    • 84877715502 scopus 로고    scopus 로고
    • US Army Corps Engineers
    • US Army Corps Engineers, http://www.tec.army.mil/hypercube/.
  • 29
    • 47749123490 scopus 로고    scopus 로고
    • Fast nonnegative matrix factorization algorithms using projected gradient approaches for large-scale problems
    • R. Zdunek, and A. Cichocki Fast nonnegative matrix factorization algorithms using projected gradient approaches for large-scale problems Comput. Intell. Neurosci. 2008 1 13
    • (2008) Comput. Intell. Neurosci. , pp. 1-13
    • Zdunek, R.1    Cichocki, A.2
  • 30
    • 17444367316 scopus 로고    scopus 로고
    • An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images
    • Y. Zhang, and G. Hong An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images Inf. Fus. 6 2005 225 234
    • (2005) Inf. Fus. , vol.6 , pp. 225-234
    • Zhang, Y.1    Hong, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.