메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1605-1610

A self-evolving anomaly detection framework for developing highly dependable utility clouds

Author keywords

Anomaly identification; Autonomic management; Cloud computing; Dependable systems; Self evolvement

Indexed keywords

ANOMALY DETECTION FRAMEWORKS; ANOMALY IDENTIFICATION; AUTONOMIC MANAGEMENT; AUTONOMICS; CLOUD-COMPUTING; DEPENDABILITY ASSURANCE; DEPENDABLE SYSTEMS; FAILURE MANAGEMENT; RESOURCE MANAGEMENT; SELF EVOLVEMENT;

EID: 84877668862     PISSN: 23340983     EISSN: 25766813     Source Type: Conference Proceeding    
DOI: 10.1109/GLOCOM.2012.6503343     Document Type: Conference Paper
Times cited : (23)

References (46)
  • 8
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Communications of the ACM, 51(1):107-113, 2008.
    • (2008) Communications of the ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 13
    • 77956227790 scopus 로고    scopus 로고
    • Quantifying event correlations for proactive failure management in networked computing systems
    • S. Fu and C. Xu. Quantifying event correlations for proactive failure management in networked computing systems. Journal of Parallel and Distributed Computing, 70(11):1100-1109, 2010.
    • (2010) Journal of Parallel and Distributed Computing , vol.70 , Issue.11 , pp. 1100-1109
    • Fu, S.1    Xu, C.2
  • 18
    • 84863074638 scopus 로고    scopus 로고
    • Ensemble of Bayesian predictors and decision trees for proactive failure management in cloud computing systems
    • Q. Guan, Z. Zhang, and S. Fu. Ensemble of bayesian predictors and decision trees for proactive failure management in cloud computing systems. Journal of Communications, 7(1):52-61, 2012.
    • (2012) Journal of Communications , vol.7 , Issue.1 , pp. 52-61
    • Guan, Q.1    Zhang, Z.2    Fu, S.3
  • 21
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • V. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial Intelligence Review, 22:85-126, 2004.
    • (2004) Artificial Intelligence Review , vol.22 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 33
    • 20344383743 scopus 로고    scopus 로고
    • Virtual machine monitors: Current technology and future trends
    • M. Rosenblum and T. Garfinkel. Virtual machine monitors: current technology and future trends. IEEE Computer, 38(5):39-47, 2005.
    • (2005) IEEE Computer , vol.38 , Issue.5 , pp. 39-47
    • Rosenblum, M.1    Garfinkel, T.2
  • 35
    • 77950267881 scopus 로고    scopus 로고
    • A survey of online failure prediction methods
    • F. Salfner, M. Lenk, and M. Malek. A survey of online failure prediction methods. ACM Computing Surveys, 42(3):10:1-10:42, 2010.
    • (2010) ACM Computing Surveys , vol.42 , Issue.3 , pp. 101-1042
    • Salfner, F.1    Lenk, M.2    Malek, M.3
  • 38
    • 4444380999 scopus 로고    scopus 로고
    • A survey of fault localization techniques in computer networks
    • M. Steinder and A. Sethi. A survey of fault localization techniques in computer networks. Science of Computer Programming, 53(2):165-194, 2004.
    • (2004) Science of Computer Programming , vol.53 , Issue.2 , pp. 165-194
    • Steinder, M.1    Sethi, A.2
  • 40
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • January
    • D. M. J. Tax and R. P.W. Duin. Support vector data description. Machine learning, 54(1):45-66, January 2004.
    • (2004) Machine Learning , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.