메뉴 건너뛰기




Volumn , Issue , 2003, Pages 426-435

Critical event prediction for proactive management in large-scale computer clusters

Author keywords

Critical event prediction; Large scale clusters; System event log

Indexed keywords

ACTIVITY REPORT; AUTONOMIC COMPUTING; AVAILABILITY AND SERVICEABILITY; BAYESIAN NETWORK MODELS; CATASTROPHIC FAILURES; CLUSTER SYSTEMS; COMPUTER CLUSTERS; CONTINUOUS MONITORING; CRITICAL EVENTS; DISTRIBUTED COMPUTING SYSTEMS; EVENT CORRELATION; FILTERING TECHNIQUE; HEALTH MEASUREMENT; HIGH DEGREE OF ACCURACY; HISTORICAL DATA; LARGE CLUSTERS; LARGE-SCALE CLUSTERS; LEVELS OF AUTOMATION; POTENTIAL PROBLEMS; PREDICTION ALGORITHMS; PREDICTION AND CONTROL; PROACTIVE MANAGEMENT; PROBABILISTIC NETWORK; REDUNDANT EVENT; RULE-BASED CLASSIFICATION; SELF-HEALING; SYSTEM PERFORMANCE PARAMETERS; SYSTEM RELIABILITY; SYSTEMS MANAGEMENT; TIME SERIES MODELS;

EID: 77952378080     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/956750.956799     Document Type: Conference Paper
Times cited : (220)

References (29)
  • 10
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • N. Friedman. Learning belief networks in the presence of missing values and hidden variables. In Proceedings 14th. Intl. Conf. on Machine Lerning, pages 125-133, 1997.
    • (1997) Proceedings 14th. Intl. Conf. on Machine Lerning , pp. 125-133
    • Friedman, N.1
  • 12
    • 0003846041 scopus 로고    scopus 로고
    • A tutorial on learning with bayesian networks
    • Microsoft Research
    • D. Heckerman. A tutorial on learning with bayesian networks. Tech. Rep. MSR-TR-95-06, Microsoft Research, 1996.
    • (1996) Tech. Rep. MSR-TR-95-06
    • Heckerman, D.1
  • 16
    • 0025502686 scopus 로고
    • Error log analysis: Statistical modeling and heuristic trend analysis
    • October
    • T. Y. Lin and D. P. Siewiorek. Error log analysis: Statistical modeling and heuristic trend analysis. IEEE Trans Reliability, 39 (4):419-432, October 1990.
    • (1990) IEEE Trans. Reliability , vol.39 , Issue.4 , pp. 419-432
    • Lin, T.Y.1    Siewiorek, D.P.2
  • 17
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • October
    • R. S. Michalski. A theory and methodology of inductive learning Machine Learning, 39 (4):419-432, October 1995.
    • (1995) Machine Learning , vol.39 , Issue.4 , pp. 419-432
    • Michalski, R.S.1
  • 19
    • 0016643159 scopus 로고
    • The discrete weibull distribution
    • December
    • T. Nakagawa and S. Osaki. The discrete weibull distribution. IEEE Trans. On Reliability, R24:300-30, December 1975.
    • (1975) IEEE Trans. on Reliability , vol.R24 , pp. 300-330
    • Nakagawa, T.1    Osaki, S.2
  • 22
    • 12444287222 scopus 로고    scopus 로고
    • Providing persistent and consistent resources through event log analysis and predictions for large-scale computing systems
    • June
    • R. K. Sahoo, M. Bae, R. Vilalta, J. Moreira, S. Ma and M. Gupta. Providing persistent and consistent resources through event log analysis and predictions for large-scale computing systems In SHAMAN, Workshop, ICS'2002, June 2002
    • (2002) SHAMAN, Workshop, ICS'2002
    • Sahoo, R.K.1    Bae, M.2    Vilalta, R.3    Moreira, J.4    Ma, S.5    Gupta, M.6
  • 26
    • 33847141517 scopus 로고    scopus 로고
    • Timeweaver: A genetic algorithm for identifying predictive patterns in sequence of events
    • G. M. Weiss. Timeweaver: A genetic algorithm for identifying predictive patterns in sequence of events. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 13-17, 1999.
    • (1999) Proceedings of the Genetic and Evolutionary Computation Conference , pp. 13-17
    • Weiss, G.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.