메뉴 건너뛰기




Volumn , Issue , 2013, Pages 17-24

Indexing and searching 100M images with map-reduce

Author keywords

hadoop; high dimensional indexing; map reduce

Indexed keywords

FAILURE DETECTION; HADOOP; HIGH-DIMENSIONAL INDEXING; INDEXING ALGORITHMS; MAP-REDUCE; MULTIMEDIA COLLECTIONS; PERFORMANCE IMPROVEMENTS; SIFT DESCRIPTORS;

EID: 84877606551     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2461466.2461470     Document Type: Conference Paper
Times cited : (71)

References (23)
  • 3
    • 4544259509 scopus 로고    scopus 로고
    • Locality-sensitive hashing scheme based on p-stable distributions
    • M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In SCG, 2004.
    • (2004) SCG
    • Datar, M.1    Immorlica, N.2    Indyk, P.3    Mirrokni, V.S.4
  • 4
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM, 51(1), 2008.
    • (2008) Commun. ACM , vol.51 , Issue.1
    • Dean, J.1    Ghemawat, S.2
  • 5
    • 74049093505 scopus 로고    scopus 로고
    • Evaluation of gist descriptors for web-scale image search
    • M. Douze, H. Jégou, H. Singh, L. Amsaleg, and C. Schmid. Evaluation of gist descriptors for web-scale image search. In CIVR, 2009.
    • (2009) CIVR
    • Douze, M.1    Jégou, H.2    Singh, H.3    Amsaleg, L.4    Schmid, C.5
  • 7
    • 15044355327 scopus 로고    scopus 로고
    • Similarity search in high dimensions via hashing
    • A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In VLDB, 1999.
    • (1999) VLDB
    • Gionis, A.1    Indyk, P.2    Motwani, R.3
  • 9
    • 84864118261 scopus 로고    scopus 로고
    • Imageterrier: An extensible platform for scalable high-performance image retrieval
    • J. S. Hare, S. Samangooei, D. P. Dupplaw, and P. H. Lewis. Imageterrier: an extensible platform for scalable high-performance image retrieval. In ICMR, 2012.
    • (2012) ICMR
    • Hare, J.S.1    Samangooei, S.2    Dupplaw, D.P.3    Lewis, P.H.4
  • 10
    • 70449560133 scopus 로고    scopus 로고
    • Hamming embedding and weak geometric consistency for large scale image search
    • H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency for large scale image search. In ECCV, 2008.
    • (2008) ECCV
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 13
    • 80051606616 scopus 로고    scopus 로고
    • Searching in one billion vectors: Re-rank with source coding
    • H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in one billion vectors: Re-rank with source coding. In ICASSP, 2011.
    • (2011) ICASSP
    • Jégou, H.1    Tavenard, R.2    Douze, M.3    Amsaleg, L.4
  • 14
    • 33750205459 scopus 로고    scopus 로고
    • Grid'5000: A large scale and highly reconfigurable experimental Grid testbed
    • Y. Jégou, S. Lantéri, J. Leduc, and all. Grid'5000: a large scale and highly reconfigurable experimental Grid testbed. Intl. Journal of HPC Applications, 20(4), 2006.
    • (2006) Intl. Journal of HPC Applications , vol.20 , Issue.4
    • Jégou, Y.1    Lantéri, S.2    Leduc, J.3
  • 15
    • 70350660774 scopus 로고    scopus 로고
    • A posteriori multi-probe locality sensitive hashing
    • A. Joly and O. Buisson. A posteriori multi-probe locality sensitive hashing. In MM, 2008.
    • (2008) MM
    • Joly, A.1    Buisson, O.2
  • 16
    • 64849099560 scopus 로고    scopus 로고
    • NV-Tree: An efficient disk-based index for approximate search in very large high-dimensional collections
    • H. Lejsek, F. H. Amundsson, B. T. Jónsson, and L. Amsaleg. NV-Tree: An efficient disk-based index for approximate search in very large high-dimensional collections. IEEE Trans. on PAMI, 2009.
    • (2009) IEEE Trans. on PAMI
    • Lejsek, H.1    Amundsson, F.H.2    Jónsson, B.T.3    Amsaleg, L.4
  • 17
    • 79959687325 scopus 로고    scopus 로고
    • NV-Tree: Nearest neighbors at the billion scale
    • H. Lejsek, B. T. Jónsson, and L. Amsaleg. NV-Tree: nearest neighbors at the billion scale. In ICMR, 2011.
    • (2011) ICMR
    • Lejsek, H.1    Jónsson, B.T.2    Amsaleg, L.3
  • 18
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale invariant keypoints
    • D. Lowe. Distinctive image features from scale invariant keypoints. IJCV, 60(2), 2004.
    • (2004) IJCV , vol.60 , Issue.2
    • Lowe, D.1
  • 19
    • 84955245129 scopus 로고    scopus 로고
    • Multi-probe lsh: Efficient indexing for high-dimensional similarity search
    • Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh: efficient indexing for high-dimensional similarity search. In VLDB, 2007.
    • (2007) VLDB
    • Lv, Q.1    Josephson, W.2    Wang, Z.3    Charikar, M.4    Li, K.5
  • 20
    • 77953324416 scopus 로고    scopus 로고
    • Locality sensitive hashing: A comparison of hash function types and querying mechanisms
    • L. Paulevé, H. Jégou, and L. Amsaleg. Locality sensitive hashing: A comparison of hash function types and querying mechanisms. Pattern Recognition Letters, 2010.
    • (2010) Pattern Recognition Letters
    • Paulevé, L.1    Jégou, H.2    Amsaleg, L.3
  • 21
    • 51949105132 scopus 로고    scopus 로고
    • Lost in quantization: Improving particular object retrieval in large scale image databases
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Improving particular object retrieval in large scale image databases. In CVPR, 2008.
    • (2008) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 23
    • 0345414182 scopus 로고    scopus 로고
    • Video google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV, 2003.
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.