메뉴 건너뛰기




Volumn , Issue , 2007, Pages 103-112

Finding near neighbors through cluster pruning

Author keywords

Clustering; Generative model; Nearest neighbor

Indexed keywords

GENERATIVE MODELS; PREPROCESSING; RANDOMIZED TECHNIQUES;

EID: 35448996113     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1265530.1265545     Document Type: Conference Paper
Times cited : (27)

References (25)
  • 2
    • 0001802606 scopus 로고    scopus 로고
    • The X-Tree: An index structure for high dimensional data
    • S. Berchtold, K. Keim, and H.-P. Kriegel. The X-Tree: An index structure for high dimensional data. In VLDB'96.
    • VLDB'96
    • Berchtold, S.1    Keim, K.2    Kriegel, H.-P.3
  • 3
    • 0037492265 scopus 로고    scopus 로고
    • Efficient search for approximate nearest neighbor in high dimensional spaces
    • E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor in high dimensional spaces. SIAM Journal on Computing, 30(2):451-474, 2000.
    • (2000) SIAM Journal on Computing , vol.30 , Issue.2 , pp. 451-474
    • Kushilevitz, E.1    Ostrovsky, R.2    Rabani, Y.3
  • 4
    • 0027540038 scopus 로고
    • Approximate closest point queries in high dimensions
    • M. Bern. Approximate closest point queries in high dimensions. Information Processing Letters, 45, 1993.
    • (1993) Information Processing Letters , vol.45
    • Bern, M.1
  • 5
    • 35448985577 scopus 로고    scopus 로고
    • Distance-based indexing for high-dimensional metric spaces
    • T Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional metric spaces. In PODS'97.
    • PODS'97
    • Bozkaya, T.1    Ozsoyoglu, M.2
  • 6
    • 85088331061 scopus 로고    scopus 로고
    • Nearest neighbor queries in metric spaces
    • K. Clarkson. Nearest neighbor queries in metric spaces. In STOC'97.
    • STOC'97
    • Clarkson, K.1
  • 7
    • 35448967249 scopus 로고    scopus 로고
    • Approximate nearest neighbor - towards removing the curse of dimensionality
    • R. Motwani, P. Indyk. Approximate nearest neighbor - towards removing the curse of dimensionality. In STOC'98.
    • STOC'98
    • Motwani, R.1    Indyk, P.2
  • 8
    • 0033909182 scopus 로고    scopus 로고
    • On the geometry of similarity search: Dimensionality curse and concentration of measure
    • To Appear
    • Vladimir Pestov. On the geometry of similarity search: dimensionality curse and concentration of measure. Information Processing Letters, To Appear.
    • Information Processing Letters
    • Pestov, V.1
  • 10
    • 35448998253 scopus 로고    scopus 로고
    • Density-based indexing for approximate nearest-neighbor queries
    • K. P. Bennett, U. Fayyad, and D. Geiger. Density-based indexing for approximate nearest-neighbor queries. In KDD '99.
    • KDD '99
    • Bennett, K.P.1    Fayyad, U.2    Geiger, D.3
  • 11
    • 0007173470 scopus 로고
    • Near neighbor search in large metric spaces
    • Sergey Brin. Near neighbor search in large metric spaces. In The VLDB Journal, 574-584, 1995.
    • (1995) The VLDB Journal , pp. 574-584
    • Brin, S.1
  • 12
    • 85088759866 scopus 로고    scopus 로고
    • Efficient similarity search and classification via rank aggregation
    • R. Fagin, R. Kumar, and D. Sivakumar Efficient similarity search and classification via rank aggregation. SIGMOD '03.
    • SIGMOD '03
    • Fagin, R.1    Kumar, R.2    Sivakumar, D.3
  • 13
  • 15
    • 35448939455 scopus 로고    scopus 로고
    • Finding topics in collections of documents: A shared nearest neighbor approach
    • L. Ertz, M. Steinbach, and V. Kumar. Finding topics in collections of documents: A shared nearest neighbor approach. In Text Mine '01.
    • Text Mine '01
    • Ertz, L.1    Steinbach, M.2    Kumar, V.3
  • 16
    • 84989529445 scopus 로고    scopus 로고
    • Optimization of inverted vector searches
    • C. Buckley and A. F. Lewit. Optimization of inverted vector searches. In SIGIR '85, 97-110.
    • SIGIR '85 , pp. 97-110
    • Buckley, C.1    Lewit, A.F.2
  • 18
    • 3543147086 scopus 로고
    • Recent trends in hierarchical document clustering: A critical review
    • P. Willet. Recent trends in hierarchical document clustering: a critical review. In Information Processing and Management, vol. 24(5), 577-597, 1988.
    • (1988) Information Processing and Management , vol.24 , Issue.5 , pp. 577-597
    • Willet, P.1
  • 19
    • 84976862194 scopus 로고
    • The ubiquitous b-tree
    • D. Comer. The ubiquitous b-tree. In ACM Computing Surveys, 11(2):121137, 1979.
    • (1979) ACM Computing Surveys , vol.11 , Issue.2 , pp. 121137
    • Comer, D.1
  • 20
    • 0021615874 scopus 로고    scopus 로고
    • R-trees: A dynamic index structure for spatial searching
    • A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD '84.
    • SIGMOD '84
    • Guttman, A.1
  • 21
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical Clustering Using Dynamic Modeling
    • August
    • G. Karypis, E-H Han, and V. Kumar. Chameleon: Hierarchical Clustering Using Dynamic Modeling. IEEE Computer, 32(8):68-75, August 1999.
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.-H.2    Kumar, V.3
  • 22
    • 0031162081 scopus 로고    scopus 로고
    • The sr-tree: An index structure for high-dimensional nearest neighbor queries
    • N. Katayama and S. Satoh. The sr-tree: An index structure for high-dimensional nearest neighbor queries. In SIGMOD'97.
    • SIGMOD'97
    • Katayama, N.1    Satoh, S.2
  • 25
    • 84877314000 scopus 로고    scopus 로고
    • Contrast Plots and P-Sphere Trees: Space vs. Time in Nearest Neighbour Searches
    • J. Goldstein and Raghu Ramakrishnan. Contrast Plots and P-Sphere Trees: Space vs. Time in Nearest Neighbour Searches. In VLDB'00.
    • VLDB'00
    • Goldstein, J.1    Ramakrishnan, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.