-
5
-
-
36249022993
-
-
San Diego, Calif, USA Academic Press Inc. MR1658022
-
Podlubny I., Fractional Differential Equations 1999 198 San Diego, Calif, USA Academic Press Inc. xxiv+340 MR1658022
-
(1999)
Fractional Differential Equations
, vol.198
-
-
Podlubny, I.1
-
6
-
-
0003548431
-
-
Preprint series A08-98, Fachbreich Mathematik und Informatik, Freic Universitat Berlin, 1998
-
Luchko A. Y., Groneflo R., The initial value problem for some fractional differential equations with the Caputo derivative. Preprint series A08-98, Fachbreich Mathematik und Informatik, Freic Universitat Berlin, 1998
-
The Initial Value Problem for Some Fractional Differential Equations with the Caputo Derivative
-
-
Luchko, A.Y.1
Groneflo, R.2
-
7
-
-
52349105913
-
Modeling the cardiac tissue electrode interface using fractional calculus
-
2-s2.0-52349105913 10.1177/1077546307087439
-
Magin R. L., Ovadia M., Modeling the cardiac tissue electrode interface using fractional calculus. Journal of Vibration and Control 2008 14 9-10 1431 1442 2-s2.0-52349105913 10.1177/1077546307087439
-
(2008)
Journal of Vibration and Control
, vol.14
, Issue.9-10
, pp. 1431-1442
-
-
Magin, R.L.1
Ovadia, M.2
-
8
-
-
84977255207
-
Linear models of dissipation whose Q is almost frequency independent - Part II
-
Caputo M., Linear models of dissipation whose Q is almost frequency independent-part II. Geophysical Journal International 1967 13 5 529 539
-
(1967)
Geophysical Journal International
, vol.13
, Issue.5
, pp. 529-539
-
-
Caputo, M.1
-
10
-
-
29944445628
-
A generalised groundwater flow equation using the concept of non-integer order derivatives
-
Cloot A., Botha J. F., A generalised groundwater flow equation using the concept of non-integer order derivatives. Water SA 2006 32 1 55 78
-
(2006)
Water SA
, vol.32
, Issue.1
, pp. 55-78
-
-
Cloot, A.1
Botha, J.F.2
-
11
-
-
34247336205
-
Kronecker operational matrices for fractional calculus and some applications
-
DOI 10.1016/j.amc.2006.08.122, PII S0096300306011593
-
Kilicman A., Al Zhour Z. A. A., Kronecker operational matrices for fractional calculus and some applications. Applied Mathematics and Computation 2007 187 1 250 265 10.1016/j.amc.2006.08.122 MR2323577 (Pubitemid 46635724)
-
(2007)
Applied Mathematics and Computation
, vol.187
, Issue.1
, pp. 250-265
-
-
Kilicman, A.1
Al Zhour, Z.A.A.2
-
13
-
-
0242354999
-
Geometric and physical interpretation of fractional integration and fractional differentiation
-
MR1967839
-
Podlubny I., Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus & Applied Analysis 2002 5 4 367 386 MR1967839
-
(2002)
Fractional Calculus & Applied Analysis
, vol.5
, Issue.4
, pp. 367-386
-
-
Podlubny, I.1
-
15
-
-
56249110637
-
Numerical solutions of the space-time fractional advection-dispersion equation
-
10.1002/num.20324 MR2453942
-
Momani S., Odibat Z., Numerical solutions of the space-time fractional advection-dispersion equation. Numerical Methods for Partial Differential Equations 2008 24 6 1416 1429 10.1002/num.20324 MR2453942
-
(2008)
Numerical Methods for Partial Differential Equations
, vol.24
, Issue.6
, pp. 1416-1429
-
-
Momani, S.1
Odibat, Z.2
-
16
-
-
10344238128
-
Adomian decomposition: A tool for solving a system of fractional differential equations
-
DOI 10.1016/j.jmaa.2004.07.039, PII S0022247X04006286
-
Daftardar-Gejji V., Jafari H., Adomian decomposition: a tool for solving a system of fractional differential equations. Journal of Mathematical Analysis and Applications 2005 301 2 508 518 10.1016/j.jmaa.2004.07.039 MR2105689 (Pubitemid 39630973)
-
(2005)
Journal of Mathematical Analysis and Applications
, vol.301
, Issue.2
, pp. 508-518
-
-
Daftardar-Gejji, V.1
Jafari, H.2
-
17
-
-
84874054174
-
A review of the Adomian decomposition method and its applications to fractional differential equations
-
Duan J. S., Rach R., Bulean D., Wazwaz A. M., A review of the Adomian decomposition method and its applications to fractional differential equations. Communications in Fractional Calculus 2012 3 2 73 99
-
(2012)
Communications in Fractional Calculus
, vol.3
, Issue.2
, pp. 73-99
-
-
Duan, J.S.1
Rach, R.2
Bulean, D.3
Wazwaz, A.M.4
-
18
-
-
84874084355
-
The Laplace-Adomian-Pade technique for the seepage flows with the Riemann-Liouville derivatives
-
Zeng D. Q., Qin Y. M., The Laplace-Adomian-Pade technique for the seepage flows with the Riemann-Liouville derivatives. Communications in Fractional Calculus 2012 3 26 29
-
(2012)
Communications in Fractional Calculus
, Issue.3
, pp. 26-29
-
-
Zeng, D.Q.1
Qin, Y.M.2
-
19
-
-
84876560440
-
Analytical solution of groundwater flow equation via Homotopy Decomposition Method
-
Atangana A., Botha J. F., Analytical solution of groundwater flow equation via Homotopy Decomposition Method. Journal of Earth Science & Climatic Change 2012 3 115 2157
-
(2012)
Journal of Earth Science & Climatic Change
, vol.3
, Issue.115
, pp. 2157
-
-
Atangana, A.1
Botha, J.F.2
-
20
-
-
0037174280
-
Analytical approximate solutions for nonlinear fractional differential equations
-
DOI 10.1016/S0096-3003(01)00167-9, PII S0096300301001679
-
Shawagfeh N. T., Analytical approximate solutions for nonlinear fractional differential equations. Applied Mathematics and Computation 2002 131 2-3 517 529 10.1016/S0096-3003(01)00167-9 MR1920243 (Pubitemid 34813503)
-
(2002)
Applied Mathematics and Computation
, vol.131
, Issue.2-3
, pp. 517-529
-
-
Shawagfeh, N.T.1
-
22
-
-
84875378030
-
Variational iteration method for the Burgers' flow with fractional derivatives - New Lagrange multipliers
-
10.1016/j.apm.2012.12.018
-
Wu G. C., Baleanu D., Variational iteration method for the Burgers' flow with fractional derivatives-New Lagrange multipliers. Applied Mathematical Modelling 2013 37 9 6183 6190 10.1016/j.apm.2012.12.018
-
(2013)
Applied Mathematical Modelling
, vol.37
, Issue.9
, pp. 6183-6190
-
-
Wu, G.C.1
Baleanu, D.2
-
23
-
-
43049157795
-
Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives
-
10.1016/j.amc.2007.10.050 MR2421626
-
Chen Y., An H.-L., Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives. Applied Mathematics and Computation 2008 200 1 87 95 10.1016/j.amc.2007.10.050 MR2421626
-
(2008)
Applied Mathematics and Computation
, vol.200
, Issue.1
, pp. 87-95
-
-
Chen, Y.1
An, H.-L.2
-
24
-
-
84876534192
-
Time-fractional Coupled - The Korteweg-de Vries Equations
-
2013, Article ID 947986, 8 pages, 2013
-
Atangana A., Secer A., Time-fractional Coupled-the Korteweg-de Vries Equations. Abstract Applied Analysis. vol. 2013, Article ID 947986, 8 pages, 2013
-
Abstract Applied Analysis
-
-
Atangana, A.1
Secer, A.2
-
25
-
-
84876512794
-
New class of boundary value problems
-
Abdon A., New class of boundary value problems. Information Sciences Letters 2012 1 2 67 76
-
(2012)
Information Sciences Letters
, vol.1
, Issue.2
, pp. 67-76
-
-
Abdon, A.1
-
26
-
-
84855205702
-
A short-distance integral-balance solution to a strong subdiffusion equation: A weak power-law profile
-
Hristov J., A short-distance integral-balance solution to a strong subdiffusion equation: a weak power-law profile. International Review of Chemical Engineering-Rapid Communications 2010 2 5 555 563
-
(2010)
International Review of Chemical Engineering-Rapid Communications
, vol.2
, Issue.5
, pp. 555-563
-
-
Hristov, J.1
-
27
-
-
0034032484
-
Application of a fractional advection-dispersion equation
-
DOI 10.1029/2000WR900031
-
Benson D. A., Wheatcraft S. W., Meerschaert M. M., Application of a fractional advection-dispersion equation. Water Resources Research 2000 36 6 1403 1412 (Pubitemid 30334241)
-
(2000)
Water Resources Research
, vol.36
, Issue.6
, pp. 1403-1412
-
-
Benson, D.A.1
Wheatcraft, S.W.2
Meerschaert, M.M.3
-
28
-
-
0034113992
-
The fractional-order governing equation of Levy motion
-
DOI 10.1029/2000WR900032
-
Benson D. A., Wheatcraft S. W., Meerschaert M. M., The fractional-order governing equation of Lévy motion. Water Resources Research 2000 36 6 1413 1423 (Pubitemid 30334242)
-
(2000)
Water Resources Research
, vol.36
, Issue.6
, pp. 1413-1423
-
-
Benson, D.A.1
Wheatcraft, S.W.2
Meerschaert, M.M.3
-
29
-
-
0035069924
-
Fractional dispersion, Lévy motion, and the MADE tracer tests
-
DOI 10.1023/A:1006733002131
-
Benson D. A., Schumer R., Meerschaert M. M., Wheatcraft S. W., Fractional dispersion, Lévy motion, and the MADE tracer tests. Transport in Porous Media 2001 42 1-2 211 240 10.1023/A:1006733002131 MR1948593 (Pubitemid 32270340)
-
(2001)
Transport in Porous Media
, vol.42
, Issue.1-2
, pp. 211-240
-
-
Benson, D.A.1
Schumer, R.2
Meerschaert, M.M.3
Wheatcraft, S.W.4
-
30
-
-
0034515585
-
Fractional advection-dispersion equation: A classical mass balance with convolution-Fickian flux
-
DOI 10.1029/2000WR900261
-
Cushman J. H., Ginn T. R., Fractional advection-dispersion equation: a classical mass balance with convolution-Fickian flux. Water Resources Research 2000 36 12 3763 3766 2-s2.0-0034515585 10.1029/2000WR900261 (Pubitemid 32039925)
-
(2000)
Water Resources Research
, vol.36
, Issue.12
, pp. 3763-3766
-
-
Cushman, J.H.1
Ginn, T.R.2
-
31
-
-
33845247896
-
Modeling Non-fickian transport in geological formations as a continuous time random walk
-
DOI 10.1029/2005RG000178
-
Berkowitz B., Cortis A., Dentz M., Scher H., Modeling Non-fickian transport in geological formations as a continuous time random walk. Reviews of Geophysics 2006 44 2 2-s2.0-33845247896 10.1029/2005RG000178 RG2003 (Pubitemid 46044201)
-
(2006)
Reviews of Geophysics
, vol.44
, Issue.2
-
-
Berkowitz, B.1
Cortis, A.2
Dentz, M.3
Scher, H.4
-
32
-
-
4043102385
-
Limit theorems for continuous-time random walks with infinite mean waiting times
-
DOI 10.1239/jap/1091543414
-
Meerschaert M. M., Scheffler H.-P., Limit theorems for continuous-time random walks with infinite mean waiting times. Journal of Applied Probability 2004 41 3 623 638 MR2074812 (Pubitemid 39620503)
-
(2004)
Journal of Applied Probability
, vol.41
, Issue.3
, pp. 623-638
-
-
Meerschaert, M.M.1
Scheffler, H.-P.2
-
34
-
-
0023794199
-
An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry
-
2-s2.0-0023794199
-
Wheatcraft S.W., Tyler S.W., An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry, Water Resources Research, 1988, 24, 566-578
-
(1988)
Water Resources Research
, vol.24
, Issue.4
, pp. 566-578
-
-
Wheatcraft, S.W.1
Tyler, S.W.2
|