-
1
-
-
0016355478
-
A new look at the statistical model identification
-
doi:10.1109/TAC.1974.1100705
-
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, AC-19, 716-723. doi: 10. 1109/TAC. 1974. 1100705.
-
(1974)
IEEE Transactions on Automatic Control
, vol.AC-19
, pp. 716-723
-
-
Akaike, H.1
-
4
-
-
77952666333
-
Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data
-
doi:10.1109/TPAMI.2009.149
-
Baek, J., McLachlan, G. J., & Flack, L. K. (2010). Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1298-1309. doi: 10. 1109/TPAMI. 2009. 149.
-
(2010)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.32
, pp. 1298-1309
-
-
Baek, J.1
McLachlan, G.J.2
Flack, L.K.3
-
5
-
-
84937549955
-
The scree test for the number of factors
-
doi:10.1207/s15327906mbr0102_10
-
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245-276. doi: 10. 1207/s15327906mbr0102_10.
-
(1966)
Multivariate Behavioral Research
, vol.1
, pp. 245-276
-
-
Cattell, R.B.1
-
6
-
-
0030351528
-
An entropy criterion for assessing the number of clusters in a mixture model
-
doi:10.1007/BF01246098
-
Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13, 195-212. doi: 10. 1007/BF01246098.
-
(1996)
Journal of Classification
, vol.13
, pp. 195-212
-
-
Celeux, G.1
Soromenho, G.2
-
7
-
-
33745135758
-
Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method
-
doi:10.1348/000711005X64817
-
Ceulemans, E., & Kiers, H. A. L. (2006). Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method. British Journal of Mathematical and Statistical Psychology, 59, 133-150. doi: 10. 1348/000711005X64817.
-
(2006)
British Journal of Mathematical and Statistical Psychology
, vol.59
, pp. 133-150
-
-
Ceulemans, E.1
Kiers, H.A.L.2
-
8
-
-
70449432700
-
Discriminating between strong and weak structures in three-mode principal component analysis
-
doi:10.1348/000711008X369474
-
Ceulemans, E., & Kiers, H. A. L. (2009). Discriminating between strong and weak structures in three-mode principal component analysis. British Journal of Mathematical and Statistical Psychology, 62, 601-620. doi: 10. 1348/000711008X369474.
-
(2009)
British Journal of Mathematical and Statistical Psychology
, vol.62
, pp. 601-620
-
-
Ceulemans, E.1
Kiers, H.A.L.2
-
9
-
-
79952447043
-
The CHull procedure for selecting among multilevel component solutions
-
doi:10.1016/j.chemolab.2010.08.001
-
Ceulemans, E., Timmerman, M. E., & Kiers, H. A. L. (2011). The CHull procedure for selecting among multilevel component solutions. Chemometrics and Intelligent Laboratory Systems, 106, 12-20. doi: 10. 1016/j. chemolab. 2010. 08. 001.
-
(2011)
Chemometrics and Intelligent Laboratory Systems
, vol.106
, pp. 12-20
-
-
Ceulemans, E.1
Timmerman, M.E.2
Kiers, H.A.L.3
-
10
-
-
28844440955
-
Hierarchical classes models for three-way three-mode binary data: Interrelations and model selection
-
doi:10.1007/s11336-003-1067-3
-
Ceulemans, E., & van Mechelen, I. (2005). Hierarchical classes models for three-way three-mode binary data: Interrelations and model selection. Psychometrika, 70, 461-480. doi: 10. 1007/s11336-003-1067-3.
-
(2005)
Psychometrika
, vol.70
, pp. 461-480
-
-
Ceulemans, E.1
van Mechelen, I.2
-
12
-
-
84856869926
-
How to perform multiblock component analysis in practice
-
doi:10.3758/s13428-011-0129-1
-
De Roover, K., Ceulemans, E., & Timmerman, M. E. (2012). How to perform multiblock component analysis in practice. Behavior Research Methods, 44, 41-56. doi: 10. 3758/s13428-011-0129-1.
-
(2012)
Behavior Research Methods
, vol.44
, pp. 41-56
-
-
De Roover, K.1
Ceulemans, E.2
Timmerman, M.E.3
-
14
-
-
34247529815
-
Detecting mixtures from structural model differences using latent variable mixture modeling: A comparison of relative model fit statistics
-
doi:10.1080/10705510709336744
-
Henson, J. M., Reise, S. P., & Kim, K. H. (2007). Detecting mixtures from structural model differences using latent variable mixture modeling: A comparison of relative model fit statistics. Structural Equation Modeling, 14, 202-226. doi: 10. 1080/10705510709336744.
-
(2007)
Structural Equation Modeling
, vol.14
, pp. 202-226
-
-
Henson, J.M.1
Reise, S.P.2
Kim, K.H.3
-
15
-
-
34250922831
-
The varimax criterion for analytic rotation in factor analysis
-
doi:10.1007/BF02289233
-
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187-200. doi: 10. 1007/BF02289233.
-
(1958)
Psychometrika
, vol.23
, pp. 187-200
-
-
Kaiser, H.F.1
-
17
-
-
79957612684
-
The Hull method for selecting the number of common factors
-
doi:10.1080/00273171.2011.564527
-
Lorenzo-Seva, U., Timmerman, M. E., & Kiers, H. A. L. (2011). The Hull method for selecting the number of common factors. Multivariate Behavioral Research, 46, 340-364. doi: 10. 1080/00273171. 2011. 564527.
-
(2011)
Multivariate Behavioral Research
, vol.46
, pp. 340-364
-
-
Lorenzo-Seva, U.1
Timmerman, M.E.2
Kiers, H.A.L.3
-
18
-
-
0024615164
-
Multivariate measures of similarity and niche overlap
-
doi:10.1016/0040-5809(89)90007-5
-
Lu, R.-P., Smith, E. P., & Good, I. J. (1989). Multivariate measures of similarity and niche overlap. Theoretical Population Biology, 35, 1-21. doi: 10. 1016/0040-5809(89)90007-5.
-
(1989)
Theoretical Population Biology
, vol.35
, pp. 1-21
-
-
Lu, R.-P.1
Smith, E.P.2
Good, I.J.3
-
19
-
-
33846999872
-
Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood?
-
doi:10.1207/s15327906mbr4104_4
-
Lubke, G. H., & Neale, M. C. (2006). Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood? Multivariate Behavioral Research, 41, 499-532. doi: 10. 1207/s15327906mbr4104_4.
-
(2006)
Multivariate Behavioral Research
, vol.41
, pp. 499-532
-
-
Lubke, G.H.1
Neale, M.C.2
-
20
-
-
84955365480
-
Mixtures of factor analysers for the analysis of high-dimensional data
-
K. L. Mengersen, C. P. Robert, and D. M. Titterington (Eds.), Chichester, U.K.: Wiley
-
McLachlan, G. J., Baek, J., & Rthnayake, S. I. (2011). Mixtures of factor analysers for the analysis of high-dimensional data. In K. L. Mengersen, C. P. Robert, & D. M. Titterington (Eds.), Mixtures: Estimation and application (pp. 189-212). Chichester, U. K.: Wiley.
-
(2011)
Mixtures: Estimation and Application
, pp. 189-212
-
-
McLachlan, G.J.1
Baek, J.2
Rthnayake, S.I.3
-
22
-
-
0037469105
-
Modelling high-dimensional data by mixtures of factor analyzers
-
doi:10.1016/S0167-9473(02)00183-4
-
McLachlan, G. J., Peel, D., & Bean, R. W. (2003). Modelling high-dimensional data by mixtures of factor analyzers. Computational Statistics and Data Analysis, 41, 379-388. doi: 10. 1016/S0167-9473(02)00183-4.
-
(2003)
Computational Statistics and Data Analysis
, vol.41
, pp. 379-388
-
-
McLachlan, G.J.1
Peel, D.2
Bean, R.W.3
-
23
-
-
34250115918
-
An examination of procedures for determining the number of clusters in a data set
-
Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159-179.
-
(1985)
Psychometrika
, vol.50
, pp. 159-179
-
-
Milligan, G.W.1
Cooper, M.C.2
-
24
-
-
36849091981
-
Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study
-
doi:10.1080/10705510701575396
-
Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535-569. doi: 10. 1080/10705510701575396.
-
(2007)
Structural Equation Modeling
, vol.14
, pp. 535-569
-
-
Nylund, K.L.1
Asparouhov, T.2
Muthén, B.O.3
-
25
-
-
85047674682
-
Toward a method of selecting among computational models of cognition
-
doi:10.1037/0033-295X.109.3.472
-
Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of selecting among computational models of cognition. Psychological Review, 109, 472-491. doi: 10. 1037/0033-295X. 109. 3. 472.
-
(2002)
Psychological Review
, vol.109
, pp. 472-491
-
-
Pitt, M.A.1
Myung, I.J.2
Zhang, S.3
-
26
-
-
49349117162
-
Selecting among multi-mode partitioning models of different complexities: A comparison of four model selection criteria
-
doi:10.1007/s00357-008-9005-9
-
Schepers, J., Ceulemans, E., & van Mechelen, I. (2008). Selecting among multi-mode partitioning models of different complexities: A comparison of four model selection criteria. Journal of Classification, 25, 67-85. doi: 10. 1007/s00357-008-9005-9.
-
(2008)
Journal of Classification
, vol.25
, pp. 67-85
-
-
Schepers, J.1
Ceulemans, E.2
van Mechelen, I.3
-
27
-
-
0000120766
-
Estimating the dimension of a model
-
doi:10.1214/aos/1176344136
-
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464. doi: 10. 1214/aos/1176344136.
-
(1978)
The Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
28
-
-
84866456803
-
Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
-
doi:10.1037/a0027127
-
Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological Methods, 17, 228-243. doi: 10. 1037/a0027127.
-
(2012)
Psychological Methods
, vol.17
, pp. 228-243
-
-
Vrieze, S.I.1
-
29
-
-
2442599176
-
AIC model selection using Akaike weights
-
doi:10.3758/BF03206482
-
Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11, 192-196. doi: 10. 3758/BF03206482.
-
(2004)
Psychonomic Bulletin & Review
, vol.11
, pp. 192-196
-
-
Wagenmakers, E.-J.1
Farrell, S.2
-
30
-
-
84874371777
-
CHull: A generic convex-hull-based model selection method
-
in press doi: 10. 3758/s13428-012-0238-5
-
Wilderjans, T. F., Ceulemans, E., & Meers, K. (in press). CHull: A generic convex-hull-based model selection method. Behavior Research Methods. doi: 10. 3758/s13428-012-0238-5.
-
Behavior Research Methods
-
-
Wilderjans, T.F.1
Ceulemans, E.2
Meers, K.3
|