메뉴 건너뛰기




Volumn 45, Issue 3, 2013, Pages 782-791

CHull as an alternative to AIC and BIC in the context of mixtures of factor analyzers

Author keywords

AIC; BIC; CHull; Mixture analysis; Model selection

Indexed keywords

ARTICLE; BAYES THEOREM; CLUSTER ANALYSIS; CONSUMER; FACTORIAL ANALYSIS; MULTIVARIATE ANALYSIS; PSYCHOLOGICAL MODEL; STATISTICAL MODEL; UNCERTAINTY;

EID: 84877266577     PISSN: 1554351X     EISSN: 15543528     Source Type: Journal    
DOI: 10.3758/s13428-012-0293-y     Document Type: Article
Times cited : (44)

References (30)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • doi:10.1109/TAC.1974.1100705
    • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, AC-19, 716-723. doi: 10. 1109/TAC. 1974. 1100705.
    • (1974) IEEE Transactions on Automatic Control , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 77952666333 scopus 로고    scopus 로고
    • Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data
    • doi:10.1109/TPAMI.2009.149
    • Baek, J., McLachlan, G. J., & Flack, L. K. (2010). Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1298-1309. doi: 10. 1109/TPAMI. 2009. 149.
    • (2010) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.32 , pp. 1298-1309
    • Baek, J.1    McLachlan, G.J.2    Flack, L.K.3
  • 5
    • 84937549955 scopus 로고
    • The scree test for the number of factors
    • doi:10.1207/s15327906mbr0102_10
    • Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245-276. doi: 10. 1207/s15327906mbr0102_10.
    • (1966) Multivariate Behavioral Research , vol.1 , pp. 245-276
    • Cattell, R.B.1
  • 6
    • 0030351528 scopus 로고    scopus 로고
    • An entropy criterion for assessing the number of clusters in a mixture model
    • doi:10.1007/BF01246098
    • Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13, 195-212. doi: 10. 1007/BF01246098.
    • (1996) Journal of Classification , vol.13 , pp. 195-212
    • Celeux, G.1    Soromenho, G.2
  • 7
    • 33745135758 scopus 로고    scopus 로고
    • Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method
    • doi:10.1348/000711005X64817
    • Ceulemans, E., & Kiers, H. A. L. (2006). Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method. British Journal of Mathematical and Statistical Psychology, 59, 133-150. doi: 10. 1348/000711005X64817.
    • (2006) British Journal of Mathematical and Statistical Psychology , vol.59 , pp. 133-150
    • Ceulemans, E.1    Kiers, H.A.L.2
  • 8
    • 70449432700 scopus 로고    scopus 로고
    • Discriminating between strong and weak structures in three-mode principal component analysis
    • doi:10.1348/000711008X369474
    • Ceulemans, E., & Kiers, H. A. L. (2009). Discriminating between strong and weak structures in three-mode principal component analysis. British Journal of Mathematical and Statistical Psychology, 62, 601-620. doi: 10. 1348/000711008X369474.
    • (2009) British Journal of Mathematical and Statistical Psychology , vol.62 , pp. 601-620
    • Ceulemans, E.1    Kiers, H.A.L.2
  • 9
    • 79952447043 scopus 로고    scopus 로고
    • The CHull procedure for selecting among multilevel component solutions
    • doi:10.1016/j.chemolab.2010.08.001
    • Ceulemans, E., Timmerman, M. E., & Kiers, H. A. L. (2011). The CHull procedure for selecting among multilevel component solutions. Chemometrics and Intelligent Laboratory Systems, 106, 12-20. doi: 10. 1016/j. chemolab. 2010. 08. 001.
    • (2011) Chemometrics and Intelligent Laboratory Systems , vol.106 , pp. 12-20
    • Ceulemans, E.1    Timmerman, M.E.2    Kiers, H.A.L.3
  • 10
    • 28844440955 scopus 로고    scopus 로고
    • Hierarchical classes models for three-way three-mode binary data: Interrelations and model selection
    • doi:10.1007/s11336-003-1067-3
    • Ceulemans, E., & van Mechelen, I. (2005). Hierarchical classes models for three-way three-mode binary data: Interrelations and model selection. Psychometrika, 70, 461-480. doi: 10. 1007/s11336-003-1067-3.
    • (2005) Psychometrika , vol.70 , pp. 461-480
    • Ceulemans, E.1    van Mechelen, I.2
  • 12
    • 84856869926 scopus 로고    scopus 로고
    • How to perform multiblock component analysis in practice
    • doi:10.3758/s13428-011-0129-1
    • De Roover, K., Ceulemans, E., & Timmerman, M. E. (2012). How to perform multiblock component analysis in practice. Behavior Research Methods, 44, 41-56. doi: 10. 3758/s13428-011-0129-1.
    • (2012) Behavior Research Methods , vol.44 , pp. 41-56
    • De Roover, K.1    Ceulemans, E.2    Timmerman, M.E.3
  • 14
    • 34247529815 scopus 로고    scopus 로고
    • Detecting mixtures from structural model differences using latent variable mixture modeling: A comparison of relative model fit statistics
    • doi:10.1080/10705510709336744
    • Henson, J. M., Reise, S. P., & Kim, K. H. (2007). Detecting mixtures from structural model differences using latent variable mixture modeling: A comparison of relative model fit statistics. Structural Equation Modeling, 14, 202-226. doi: 10. 1080/10705510709336744.
    • (2007) Structural Equation Modeling , vol.14 , pp. 202-226
    • Henson, J.M.1    Reise, S.P.2    Kim, K.H.3
  • 15
    • 34250922831 scopus 로고
    • The varimax criterion for analytic rotation in factor analysis
    • doi:10.1007/BF02289233
    • Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187-200. doi: 10. 1007/BF02289233.
    • (1958) Psychometrika , vol.23 , pp. 187-200
    • Kaiser, H.F.1
  • 17
    • 79957612684 scopus 로고    scopus 로고
    • The Hull method for selecting the number of common factors
    • doi:10.1080/00273171.2011.564527
    • Lorenzo-Seva, U., Timmerman, M. E., & Kiers, H. A. L. (2011). The Hull method for selecting the number of common factors. Multivariate Behavioral Research, 46, 340-364. doi: 10. 1080/00273171. 2011. 564527.
    • (2011) Multivariate Behavioral Research , vol.46 , pp. 340-364
    • Lorenzo-Seva, U.1    Timmerman, M.E.2    Kiers, H.A.L.3
  • 18
    • 0024615164 scopus 로고
    • Multivariate measures of similarity and niche overlap
    • doi:10.1016/0040-5809(89)90007-5
    • Lu, R.-P., Smith, E. P., & Good, I. J. (1989). Multivariate measures of similarity and niche overlap. Theoretical Population Biology, 35, 1-21. doi: 10. 1016/0040-5809(89)90007-5.
    • (1989) Theoretical Population Biology , vol.35 , pp. 1-21
    • Lu, R.-P.1    Smith, E.P.2    Good, I.J.3
  • 19
    • 33846999872 scopus 로고    scopus 로고
    • Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood?
    • doi:10.1207/s15327906mbr4104_4
    • Lubke, G. H., & Neale, M. C. (2006). Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood? Multivariate Behavioral Research, 41, 499-532. doi: 10. 1207/s15327906mbr4104_4.
    • (2006) Multivariate Behavioral Research , vol.41 , pp. 499-532
    • Lubke, G.H.1    Neale, M.C.2
  • 20
    • 84955365480 scopus 로고    scopus 로고
    • Mixtures of factor analysers for the analysis of high-dimensional data
    • K. L. Mengersen, C. P. Robert, and D. M. Titterington (Eds.), Chichester, U.K.: Wiley
    • McLachlan, G. J., Baek, J., & Rthnayake, S. I. (2011). Mixtures of factor analysers for the analysis of high-dimensional data. In K. L. Mengersen, C. P. Robert, & D. M. Titterington (Eds.), Mixtures: Estimation and application (pp. 189-212). Chichester, U. K.: Wiley.
    • (2011) Mixtures: Estimation and Application , pp. 189-212
    • McLachlan, G.J.1    Baek, J.2    Rthnayake, S.I.3
  • 22
    • 0037469105 scopus 로고    scopus 로고
    • Modelling high-dimensional data by mixtures of factor analyzers
    • doi:10.1016/S0167-9473(02)00183-4
    • McLachlan, G. J., Peel, D., & Bean, R. W. (2003). Modelling high-dimensional data by mixtures of factor analyzers. Computational Statistics and Data Analysis, 41, 379-388. doi: 10. 1016/S0167-9473(02)00183-4.
    • (2003) Computational Statistics and Data Analysis , vol.41 , pp. 379-388
    • McLachlan, G.J.1    Peel, D.2    Bean, R.W.3
  • 23
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 24
    • 36849091981 scopus 로고    scopus 로고
    • Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study
    • doi:10.1080/10705510701575396
    • Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535-569. doi: 10. 1080/10705510701575396.
    • (2007) Structural Equation Modeling , vol.14 , pp. 535-569
    • Nylund, K.L.1    Asparouhov, T.2    Muthén, B.O.3
  • 25
    • 85047674682 scopus 로고    scopus 로고
    • Toward a method of selecting among computational models of cognition
    • doi:10.1037/0033-295X.109.3.472
    • Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of selecting among computational models of cognition. Psychological Review, 109, 472-491. doi: 10. 1037/0033-295X. 109. 3. 472.
    • (2002) Psychological Review , vol.109 , pp. 472-491
    • Pitt, M.A.1    Myung, I.J.2    Zhang, S.3
  • 26
    • 49349117162 scopus 로고    scopus 로고
    • Selecting among multi-mode partitioning models of different complexities: A comparison of four model selection criteria
    • doi:10.1007/s00357-008-9005-9
    • Schepers, J., Ceulemans, E., & van Mechelen, I. (2008). Selecting among multi-mode partitioning models of different complexities: A comparison of four model selection criteria. Journal of Classification, 25, 67-85. doi: 10. 1007/s00357-008-9005-9.
    • (2008) Journal of Classification , vol.25 , pp. 67-85
    • Schepers, J.1    Ceulemans, E.2    van Mechelen, I.3
  • 27
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • doi:10.1214/aos/1176344136
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464. doi: 10. 1214/aos/1176344136.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 28
    • 84866456803 scopus 로고    scopus 로고
    • Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
    • doi:10.1037/a0027127
    • Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological Methods, 17, 228-243. doi: 10. 1037/a0027127.
    • (2012) Psychological Methods , vol.17 , pp. 228-243
    • Vrieze, S.I.1
  • 29
    • 2442599176 scopus 로고    scopus 로고
    • AIC model selection using Akaike weights
    • doi:10.3758/BF03206482
    • Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11, 192-196. doi: 10. 3758/BF03206482.
    • (2004) Psychonomic Bulletin & Review , vol.11 , pp. 192-196
    • Wagenmakers, E.-J.1    Farrell, S.2
  • 30
    • 84874371777 scopus 로고    scopus 로고
    • CHull: A generic convex-hull-based model selection method
    • in press doi: 10. 3758/s13428-012-0238-5
    • Wilderjans, T. F., Ceulemans, E., & Meers, K. (in press). CHull: A generic convex-hull-based model selection method. Behavior Research Methods. doi: 10. 3758/s13428-012-0238-5.
    • Behavior Research Methods
    • Wilderjans, T.F.1    Ceulemans, E.2    Meers, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.