메뉴 건너뛰기




Volumn 8, Issue 1, 2013, Pages 3-9

Pneumatic feeding system for low-temperature deposition manufacturing based on system identification: This paper proposes a model to improve the low-temperature deposition manufacturing process by adjusting the feeding velocity through the time series control

Author keywords

bone scaffold; LDM; pneumatic feeding; system identification; time series

Indexed keywords

ADDITIVE MANUFACTURING; BONE SCAFFOLDS; EXTRUSION VELOCITY; LDM; LEAST SQUARES IDENTIFICATION; LOW-TEMPERATURE DEPOSITION MANUFACTURING; PNEUMATIC FEEDING SYSTEMS; THREE-DIMENSIONAL (3D) SCAFFOLDS;

EID: 84876985712     PISSN: 17452759     EISSN: 17452767     Source Type: Journal    
DOI: 10.1080/17452759.2013.772720     Document Type: Article
Times cited : (3)

References (16)
  • 1
    • 0037275050 scopus 로고    scopus 로고
    • Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification
    • Chua, C.K. 2003. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification. International Journal of Advanced Manufacturing Technology, 21: 291 - 301. doi: 10.1007/s001700300034
    • (2003) International Journal of Advanced Manufacturing Technology , vol.21 , pp. 291-301
    • Chua, C.K.1
  • 2
    • 73849088645 scopus 로고    scopus 로고
    • Skeletal repair in rabbits using a novel biomimetic composite based on adipose-derived stem cells encapsulated in collagen I gel with PLGA-beta-TCP scaffold
    • Hao, W. 2010. Skeletal repair in rabbits using a novel biomimetic composite based on adipose-derived stem cells encapsulated in collagen I gel with PLGA-beta-TCP scaffold. Journal of Orthopaedic Research, 28 (2): 252 - 257.
    • (2010) Journal of Orthopaedic Research , vol.28 , Issue.2 , pp. 252-257
    • Hao, W.1
  • 3
    • 79952114502 scopus 로고    scopus 로고
    • Fabrication of a two-level tumor bone repair biomaterial based on a rapid prototyping technique
    • Kai, H. 2009. Fabrication of a two-level tumor bone repair biomaterial based on a rapid prototyping technique. Biofabrication, 1 (2): 025003 doi: 10.1088/1758-5082/1/2/025003
    • (2009) Biofabrication , vol.1 , Issue.2 , pp. 025003
    • Kai, H.1
  • 4
    • 84877002621 scopus 로고    scopus 로고
    • Nozzle-opening/closing response control on multi-nozzle cell controlled assembling process
    • Li, S. 2010. Nozzle-opening/closing response control on multi-nozzle cell controlled assembling process. Electromachining & Mould, 1: 9 - 12.
    • (2010) Electromachining & Mould , vol.1 , pp. 9-12
    • Li, S.1
  • 5
    • 79953877842 scopus 로고    scopus 로고
    • Fabrication of tissue engineered PCL scaffold by selective laser-sintered machine for osteogenesis of adipose-derived stem cells
    • Liao, H-T. 2011. Fabrication of tissue engineered PCL scaffold by selective laser-sintered machine for osteogenesis of adipose-derived stem cells. Virtual and Physical Prototyping, 6 (1): 57 - 60. doi: 10.1080/17452759.2011.559742
    • (2011) Virtual and Physical Prototyping , vol.6 , Issue.1 , pp. 57-60
    • Liao, H.-T.1
  • 6
    • 57349173536 scopus 로고    scopus 로고
    • Multi-nozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds
    • Liu, L. 2009. Multi-nozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88 (1): 254 - 263. doi: 10.1002/jbm.b.31176
    • (2009) Journal of Biomedical Materials Research Part B: Applied Biomaterials , vol.88 , Issue.1 , pp. 254-263
    • Liu, L.1
  • 8
    • 84870503249 scopus 로고    scopus 로고
    • Effect of process parameters on the properties of selective laser sintered Poly(3-hydroxybutyrate) scaffolds for bone tissue engineering
    • Pereira, T.F., et al., 2012. Effect of process parameters on the properties of selective laser sintered Poly(3-hydroxybutyrate) scaffolds for bone tissue engineering. Virtual and Physical Prototyping, 7 4, 275 - 285. doi: 10.1080/17452759.2012.738551
    • (2012) Virtual and Physical Prototyping , vol.7 , Issue.4 , pp. 275-285
    • Pereira, T.F.1
  • 9
    • 80955177755 scopus 로고    scopus 로고
    • Biomaterial scaffold fabrication techniques for potential tissue engineering applications
    • Subia, B., Kundu, J., and Kundu, S.C., 2010. Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Tissue Engineering, 142 - 157.
    • (2010) Tissue Engineering , pp. 142-157
    • Subia, B.1    Kundu, J.2    Kundu, S.C.3
  • 10
    • 77952574628 scopus 로고    scopus 로고
    • Indirect fabrication of gelatin scaffolds using rapid prototyping technology
    • Tan, J.Y., Chua, C.K. and Leong, K.F. 2010. Indirect fabrication of gelatin scaffolds using rapid prototyping technology. Virtual and Physical Prototyping, 5: 45 - 53. doi: 10.1080/17452751003759144
    • (2010) Virtual and Physical Prototyping , vol.5 , pp. 45-53
    • Tan, J.Y.1    Chua, C.K.2    Leong, K.F.3
  • 11
    • 84867355529 scopus 로고    scopus 로고
    • Discussion on calculation of air inflating time for vacuum containers
    • Wang, C. 2008. Discussion on calculation of air inflating time for vacuum containers. Vacuum, 45 (5): 20 - 22.
    • (2008) Vacuum , vol.45 , Issue.5 , pp. 20-22
    • Wang, C.1
  • 12
    • 79955068111 scopus 로고    scopus 로고
    • Research on fabricate of tissue engineering scaffold with MTDW
    • Wang, X. 2008. Research on fabricate of tissue engineering scaffold with MTDW. Electromachining & Mould, 5: 73 - 76.
    • (2008) Electromachining & Mould , vol.5 , pp. 73-76
    • Wang, X.1
  • 13
    • 0037036044 scopus 로고    scopus 로고
    • Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition
    • Xiong, Z. 2002. Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scripta Materialia, 46: 771 - 776. doi: 10.1016/S1359-6462(02)00071-4
    • (2002) Scripta Materialia , vol.46 , pp. 771-776
    • Xiong, Z.1
  • 14
    • 79952110839 scopus 로고    scopus 로고
    • Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering
    • Xu, M. 2010. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Biofabrication, 2 (2): 025002 doi: 10.1088/1758-5082/2/2/025002
    • (2010) Biofabrication , vol.2 , Issue.2 , pp. 025002
    • Xu, M.1
  • 15
    • 77951484093 scopus 로고    scopus 로고
    • Forming and manufacturing technique for cells and biological materials
    • Yan, Y. 2010. Forming and manufacturing technique for cells and biological materials. Journal of Mechanical Engineering, 46 (5): 80 - 87. doi: 10.3901/JME.2010.05.080
    • (2010) Journal of Mechanical Engineering , vol.46 , Issue.5 , pp. 80-87
    • Yan, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.