메뉴 건너뛰기




Volumn 37, Issue 1-2, 2013, Pages 213-228

E2GKpro: An evidential evolving multi-modeling approach for system behavior prediction with applications

Author keywords

Behavior modeling; Belief functions theory; Multi modeling; Online evidential clustering; Virtual centroids

Indexed keywords

BEHAVIOR MODELING; BELIEF FUNCTIONS THEORY; MULTI-MODELING; ONLINE EVIDENTIAL CLUSTERING; VIRTUAL CENTROIDS;

EID: 84876899413     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2012.06.023     Document Type: Article
Times cited : (16)

References (29)
  • 2
    • 25144473310 scopus 로고    scopus 로고
    • Non linear process identification using a neural network based multiple models generator
    • K. Madani, M. Rybnik, A. Chebira, Non linear process identification using a neural network based multiple models generator, in: Lecture Notes in Computer Science Series, 2003, pp. 647-654.
    • (2003) Lecture Notes in Computer Science Series , pp. 647-654
    • Madani, K.1    Rybnik, M.2    Chebira, A.3
  • 3
    • 0032637576 scopus 로고    scopus 로고
    • Nonlinear dynamic system identification: A multiple-model approach
    • A. Boukhris, G. Mourot, and J. Ragot Nonlinear dynamic system identification: a multiple-model approach Int. J. Control 72 2000 591 604
    • (2000) Int. J. Control , vol.72 , pp. 591-604
    • Boukhris, A.1    Mourot, G.2    Ragot, J.3
  • 5
    • 2742584413 scopus 로고
    • On the identification with neural networks as series-parallel and parallel models
    • Paris, France
    • O. Nelles, On the identification with neural networks as series-parallel and parallel models, in: International Conference on ANN, Paris, France, 1995.
    • (1995) International Conference on ANN
    • Nelles, O.1
  • 6
    • 34548205379 scopus 로고    scopus 로고
    • Self-organizing multi-modeling: A different way to design intelligent predictors
    • K. Madani, and L. Thiaw Self-organizing multi-modeling: a different way to design intelligent predictors Neurocomputing 70 2007 2836 2852
    • (2007) Neurocomputing , vol.70 , pp. 2836-2852
    • Madani, K.1    Thiaw, L.2
  • 9
    • 56249088622 scopus 로고    scopus 로고
    • Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation
    • M. Chandrashekhar, and R. Ganguli Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation Mech. Syst. Signal Process. 23 2 2009 384 404
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.2 , pp. 384-404
    • Chandrashekhar, M.1    Ganguli, R.2
  • 10
    • 77955579005 scopus 로고    scopus 로고
    • Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic
    • T. Haag, J. Herrmann, and M. Hanss Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic Mech. Syst. Signal Process. 24 7 2010 2021 2034
    • (2010) Mech. Syst. Signal Process. , vol.24 , Issue.7 , pp. 2021-2034
    • Haag, T.1    Herrmann, J.2    Hanss, M.3
  • 11
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • T. Takagi, and M. Sugeno Fuzzy identification of systems and its application to modeling and control Man Cybern. 15 1985 116 132
    • (1985) Man Cybern. , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 12
    • 53149134642 scopus 로고    scopus 로고
    • Evolving fuzzy classifiers using different model architectures
    • P. Angelov, E. Lughofer, and X. Zhou Evolving fuzzy classifiers using different model architectures Fuzzy Sets Syst. 2008 3160 3182
    • (2008) Fuzzy Sets Syst. , pp. 3160-3182
    • Angelov, P.1    Lughofer, E.2    Zhou, X.3
  • 13
    • 79551492286 scopus 로고    scopus 로고
    • Reducing arbitrary choices in model building for prognostics: An approach by applying parsimony principle on an evolving neuro-fuzzy system
    • M. El-Koujok, R. Gouriveau, and N. Zerhouni Reducing arbitrary choices in model building for prognostics: an approach by applying parsimony principle on an evolving neuro-fuzzy system Microelectron. Reliab. 51 2011 310 330
    • (2011) Microelectron. Reliab. , vol.51 , pp. 310-330
    • El-Koujok, M.1    Gouriveau, R.2    Zerhouni, N.3
  • 14
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • P. Angelov, and D. Filev An approach to online identification of Takagi-Sugeno fuzzy models IEEE Trans. Syst. Man Cybern. 34 2004 484 498
    • (2004) IEEE Trans. Syst. Man Cybern. , vol.34 , pp. 484-498
    • Angelov, P.1    Filev, D.2
  • 15
    • 33847205037 scopus 로고    scopus 로고
    • A multi-modeling strategy based on belief function theory
    • M. Ramdani, G. Mourot, J. Ragot, A multi-modeling strategy based on belief function theory, in: CDC-ECC 05, 2005.
    • (2005) CDC-ECC 05
    • Ramdani, M.1    Mourot, G.2    Ragot, J.3
  • 16
    • 84860214132 scopus 로고    scopus 로고
    • Evidential evolving Gustafson-Kessel algorithm for online data streams partitioning using belief function theory
    • L. Serir, E. Ramasso, and N. Zerhouni Evidential evolving Gustafson-Kessel algorithm for online data streams partitioning using belief function theory Int. J. Approx. Reasoning 53 2012 747 768
    • (2012) Int. J. Approx. Reasoning , vol.53 , pp. 747-768
    • Serir, L.1    Ramasso, E.2    Zerhouni, N.3
  • 17
    • 0028406490 scopus 로고
    • The transferable belief model
    • P. Smets, and R. Kennes The transferable belief model Artif. Intell. 66 1994 191 234
    • (1994) Artif. Intell. , vol.66 , pp. 191-234
    • Smets, P.1    Kennes, R.2
  • 18
    • 36749023291 scopus 로고    scopus 로고
    • ECM: An evidential version of the fuzzy c-means algorithm
    • M.-H. Masson, and T. Denoeux ECM: an evidential version of the fuzzy c-means algorithm Pattern Recognition 41 4 2008 1384 1397
    • (2008) Pattern Recognition , vol.41 , Issue.4 , pp. 1384-1397
    • Masson, M.-H.1    Denoeux, T.2
  • 19
    • 33644864393 scopus 로고    scopus 로고
    • On the plausibility transformation method for translating belief function models to probability models
    • B.R. Cobb, and P.P. Shenoy On the plausibility transformation method for translating belief function models to probability models Int. J. Approx. Reasoning 41 2006 314 330
    • (2006) Int. J. Approx. Reasoning , vol.41 , pp. 314-330
    • Cobb, B.R.1    Shenoy, P.P.2
  • 22
    • 0000870802 scopus 로고    scopus 로고
    • K-order additive discrete fuzzy measures and their representation
    • M. Grabisch K-order additive discrete fuzzy measures and their representation Fuzzy Sets Syst. 92 1997 167 189
    • (1997) Fuzzy Sets Syst. , vol.92 , pp. 167-189
    • Grabisch, M.1
  • 23
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • N. Kasabov, and Q. Song DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction IEEE Trans. Fuzzy Syst. 10 2002 144 154
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 24
    • 67349253008 scopus 로고    scopus 로고
    • A decade of Kasabov's evolving connectionist systems: A review
    • M. Watts A decade of Kasabov's evolving connectionist systems: a review IEEE Trans. Syst. Man Cybern. C: Appl. Rev. 39 2009 253 269
    • (2009) IEEE Trans. Syst. Man Cybern. C: Appl. Rev. , vol.39 , pp. 253-269
    • Watts, M.1
  • 25
    • 0033714963 scopus 로고    scopus 로고
    • ESOM: An algorithm to evolve self-organizing maps from on-line data streams
    • Piscataway, NJ
    • D. Deng, N. Kasabov, ESOM: an algorithm to evolve self-organizing maps from on-line data streams, in: International Joint Conference on Neural Networks, vol. 6, Piscataway, NJ, 2000, pp. 3-8.
    • (2000) International Joint Conference on Neural Networks , vol.6 , pp. 3-8
    • Deng, D.1    Kasabov, N.2
  • 26
    • 0001961635 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks - Algorithms, applications and biological motivation
    • N. Kasabov Evolving fuzzy neural networks - algorithms, applications and biological motivation Neural Networks 1998 271 274
    • (1998) Neural Networks , pp. 271-274
    • Kasabov, N.1
  • 27
    • 0001071040 scopus 로고
    • A resource allocation network for function interpolation
    • J. Platt A resource allocation network for function interpolation Neural Comput. 3 1991 213 225
    • (1991) Neural Comput. , vol.3 , pp. 213-225
    • Platt, J.1
  • 28
    • 84860668530 scopus 로고    scopus 로고
    • Evidential evolving Gustafson-Kessel algorithm (E2GK) and its application to PRONOSTIA's data streams partitioning
    • L. Serir, E. Ramasso, P. Nectoux, O. Bauer, N. Zerhouni, Evidential evolving Gustafson-Kessel algorithm (E2GK) and its application to PRONOSTIA's data streams partitioning, in: IEEE Int. Conf. on Decision and Control, 2011, pp. 8273-8278.
    • (2011) IEEE Int. Conf. on Decision and Control , pp. 8273-8278
    • Serir, L.1    Ramasso, E.2    Nectoux, P.3    Bauer, O.4    Zerhouni, N.5
  • 29
    • 0000516376 scopus 로고
    • Upper and lower probabilities induced by a multivalued mapping
    • A.P. Dempster Upper and lower probabilities induced by a multivalued mapping Ann. Math. Stat. 38 2 1967 325 339
    • (1967) Ann. Math. Stat. , vol.38 , Issue.2 , pp. 325-339
    • Dempster, A.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.