메뉴 건너뛰기




Volumn 56, Issue 1, 2013, Pages 103-115

Application of fuzzy logic techniques in estimating the regional index flow for Michigan

Author keywords

Fuzzy logic; Index flow; Low flow; Ungauged stream

Indexed keywords

10-FOLD CROSS-VALIDATION; ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; ANTHROPOGENIC ACTIVITY; FUZZY LOGIC TECHNIQUES; INDEX FLOW; LOW FLOW; MULTIPLE LINEAR REGRESSIONS; UNGAUGED STREAM;

EID: 84876825457     PISSN: 21510032     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (13)

References (40)
  • 1
    • 27744524615 scopus 로고    scopus 로고
    • Water consumption prediction of Istanbul city by using fuzzy logic approach
    • Altunkaynak, A., M. Ozger, and M. Cakamakci. 2005. Water consumption prediction of Istanbul city by using fuzzy logic approach. Water Resources Mgmt. 19(5): 641-654.
    • (2005) Water Resources Mgmt , vol.19 , Issue.5 , pp. 641-654
    • Altunkaynak, A.1    Ozger, M.2    Cakamakci, M.3
  • 2
    • 76449093164 scopus 로고    scopus 로고
    • Nile river flow forecasting based on takagi-sugeno fuzzy model
    • Al-Zu'bi, Y., A. Sheta, and J. Al-Zu'bi. 2010. Nile River flow forecasting based on Takagi-Sugeno fuzzy model. J. Applied Sci. 10(4): 284-289.
    • (2010) J. Applied Sci. , vol.10 , Issue.4 , pp. 284-289
    • Al-Zu'bi, Y.1    Sheta, A.2    Al-Zu'bi, J.3
  • 3
    • 33747145226 scopus 로고    scopus 로고
    • The challenge of providing environmental flow rules to sustain river ecosystems
    • Arthington, A. H., S. E. Bunn, N. L. Poff, and R. J. Naiman. 2006. The challenge of providing environmental flow rules to sustain river ecosystems. Ecol. Applications 16(4): 1311-1318.
    • (2006) Ecol. Applications , vol.16 , Issue.4 , pp. 1311-1318
    • Arthington, A.H.1    Bunn, S.E.2    Poff, N.L.3    Naiman, R.J.4
  • 5
    • 1942452791 scopus 로고    scopus 로고
    • Choosing between two learning algorithms based on calibrated tests
    • Menlo Park, Cal.: AAAI Press
    • Bouckaert, R. R. 2003. Choosing between two learning algorithms based on calibrated tests. In Proc. 20th Intl. Conf. on Machine Learning (ICML-2003). Menlo Park, Cal.: AAAI Press.
    • (2003) Proc. 20th Intl. Conf. on Machine Learning (ICML-2003)
    • Bouckaert, R.R.1
  • 6
    • 0036767499 scopus 로고    scopus 로고
    • The potential use of PIT telemetry for identifying and tracking crayfish in their natural environment
    • Bubb, D. H., M. C. Lucas, T. J. Thom, and P. Rycroft. 2002. The potential use of PIT telemetry for identifying and tracking crayfish in their natural environment. Hydrobiologia 483(1-3): 225-230.
    • (2002) Hydrobiologia , vol.483 , Issue.1-3 , pp. 225-230
    • Bubb, D.H.1    Lucas, M.C.2    Thom, T.J.3    Rycroft, P.4
  • 7
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze River
    • Chau, K. W., C. L. Wu, and Y. S. Li. 2005. Comparison of several flood forecasting models in Yangtze River. J. Hydrol. Eng. 10(6): 485-491.
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.6 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 8
    • 23044467858 scopus 로고    scopus 로고
    • Fuzzy neural network model for hydrologic flow routing
    • Deka, P., and V. Chandramouli. 2005. Fuzzy neural network model for hydrologic flow routing. J. Hydrol. Eng. 10(4): 302-314.
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.4 , pp. 302-314
    • Deka, P.1    Chandramouli, V.2
  • 9
    • 77953812395 scopus 로고    scopus 로고
    • Annual rainfall forecasting by using Mamdani fuzzy inference system
    • Ghalhary, G. A. F., M. M. Baygi, and H. Nokhandan. 2009. Annual rainfall forecasting by using Mamdani fuzzy inference system. Res. J. Environ. Sci. 3(4): 400-413.
    • (2009) Res J Environ Sci , vol.3 , Issue.4 , pp. 400-413
    • Ghalhary, G.A.F.1    Baygi, M.M.2    Nokhandan, H.3
  • 11
    • 78651282416 scopus 로고    scopus 로고
    • A regression model for computing index flows describing the median flow for the summer month of lowest flow in Michigan
    • Hamilton, D. A., R. C. Sorrell, and D. J. Holtschlag. 2008. A regression model for computing index flows describing the median flow for the summer month of lowest flow in Michigan. USGS Scientific Investigations Report 2008-5096.
    • (2008) USGS Scientific Investigations Report , pp. 2008-5096
    • Hamilton, D.A.1    Sorrell, R.C.2    Holtschlag, D.J.3
  • 12
    • 77949487615 scopus 로고    scopus 로고
    • Development of soft computing and applications in agricultural and biological engineering
    • Reston Va.: U.S. Geological Survey
    • Reston, Va.: U.S. Geological Survey. Huang, Y., Y. Lan, S. Thomson, A. Fang, W. C. Hoffmann, and R. E. Lacey. 2010. Development of soft computing and applications in agricultural and biological engineering. Computers and Electronics in Agric. 71(2): 107-127.
    • (2010) Computers and Electronics in Agric , vol.71 , Issue.2 , pp. 107-127
    • Huang, Y.1    Lan, Y.2    Thomson, S.3    Fang, A.4    Hoffmann, W.C.5    Lacey, R.E.6
  • 13
    • 17044442585 scopus 로고    scopus 로고
    • Development of a fuzzy logic-based rainfall-runoff model
    • Hundecha, Y., A. Bardossy, and H. W. Theisen. 2001. Development of a fuzzy logic-based rainfall-runoff model. Hydrol. Sci. 46(3): 363-376.
    • (2001) Hydrol. Sci. , vol.46 , Issue.3 , pp. 363-376
    • Hundecha, Y.1    Bardossy, A.2    Theisen, H.W.3
  • 14
    • 33748316537 scopus 로고    scopus 로고
    • Development of rainfall-runoff models using Takagi-Sugeno fuzzy inference systems
    • Jacquin, A. P., and A. Y. Shamseldin. 2006. Development of rainfall-runoff models using Takagi-Sugeno fuzzy inference systems. J. Hydrol. 329(1-2): 154-173.
    • (2006) J. Hydrol. , vol.329 , Issue.1-2 , pp. 154-173
    • Jacquin, A.P.1    Shamseldin, A.Y.2
  • 15
    • 10244243705 scopus 로고    scopus 로고
    • Fuzzy logic model approaches to daily pan evaporation estimation in western Turkey
    • Keskin, M. R., O. Terzi, and D. Taylan. 2004. Fuzzy logic model approaches to daily pan evaporation estimation in western Turkey. Hydrol. Sci. J. 49(6): 1001-1010.
    • (2004) Hydrol. Sci. J. , vol.49 , Issue.6 , pp. 1001-1010
    • Keskin, M.R.1    Terzi, O.2    Taylan, D.3
  • 16
    • 69049111816 scopus 로고    scopus 로고
    • Estimating daily pan evaporation using adaptive neural-based fuzzy inference system
    • Keskin, M. E., Ö. Terzi, and D. Taylan. 2009. Estimating daily pan evaporation using adaptive neural-based fuzzy inference system. Theor. Appl. Climatol. 98(1-2): 79-87.
    • (2009) Theor. Appl. Climatol. , vol.98 , Issue.1-2 , pp. 79-87
    • Keskin, M.E.1    Ö, T.2    Taylan, D.3
  • 17
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modeling using a neurofuzzy computing technique
    • Kisi, O. 2006. Daily pan evaporation modeling using a neurofuzzy computing technique. J. Hydrol. 329(3-4): 636-646.
    • (2006) J. Hydrol. , vol.329 , Issue.3-4 , pp. 636-646
    • Kisi, O.1
  • 18
    • 72849141637 scopus 로고    scopus 로고
    • The use of Bayesian networks to guide investments in flow and catchment restoration for impaired river ecosystems
    • Koster, B. S., S. E. Bunn, S. J. Mackay, N. L. Poff, R. J. Naiman, and P. S. Lake. 2010. The use of Bayesian networks to guide investments in flow and catchment restoration for impaired river ecosystems. Freshwater Biol. 55(1): 243-260.
    • (2010) Freshwater Biol , vol.55 , Issue.1 , pp. 243-260
    • Koster, B.S.1    Bunn, S.E.2    MacKay, S.J.3    Poff, N.L.4    Naiman, R.J.5    Lake, P.S.6
  • 19
    • 47249117508 scopus 로고    scopus 로고
    • Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method
    • Lee, K. S., and S. U. Kim. 2008. Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method. Hydrol. Proc. 22(12): 1949-1964.
    • (2008) Hydrol. Proc. , vol.22 , Issue.12 , pp. 1949-1964
    • Lee, K.S.1    Kim, S.U.2
  • 20
    • 84876833907 scopus 로고    scopus 로고
    • Library Of Michigan Lansing, Mich.: Library of Michigan. Available at Accessed 22 September 2011
    • Library of Michigan. 2006. Michigan in brief: Information about the state of Michigan. Lansing, Mich.: Library of Michigan. Available at: www.michigan.gov/documents/hal-lm-MiB- 156795-7.pdf. Accessed 22 September 2011.
    • (2006) Michigan in Brief: Information about the State of Michigan
  • 21
    • 0346687459 scopus 로고    scopus 로고
    • Application of fuzzy logic to forecast seasonal runoff
    • Mahabir, C., F. E. Hicks, and A. R. Fayek. 2003. Application of fuzzy logic to forecast seasonal runoff. Hydrol. Proc. 17(18): 3749-3762.
    • (2003) Hydrol Proc , vol.17 , Issue.18 , pp. 3749-3762
    • Mahabir, C.1    Hicks, F.E.2    Fayek, A.R.3
  • 22
    • 33750022579 scopus 로고    scopus 로고
    • Neuro-fuzzy river ice breakup forecasting system
    • Mahabir, C., F. Hicks, and A. R. Fayek. 2006. Neuro-fuzzy river ice breakup forecasting system. Cold Regions Sci. and Tech. 46(2): 100-112.
    • (2006) Cold Regions Sci. and Tech. , vol.46 , Issue.2 , pp. 100-112
    • Mahabir, C.1    Hicks, F.2    Fayek, A.R.3
  • 23
    • 68549112870 scopus 로고    scopus 로고
    • On the use of k-fold crossvalidation to choose cutoff values and assess the performance of predictive models in stepwise regression
    • doi: 10.2202/1557-4679
    • Mahmood, Z., and S. Khan. 2009. On the use of k-fold crossvalidation to choose cutoff values and assess the performance of predictive models in stepwise regression. Intl. J. Biostatistics 5(1): doi: 10.2202/1557-4679.
    • (2009) Intl. J. Biostatistics , vol.5 , Issue.1
    • Mahmood, Z.1    Khan, S.2
  • 24
    • 84892745388 scopus 로고    scopus 로고
    • Fuzzy multiple regression model for estimating software development time
    • Marza, V., and M. A. Seyyedi. 2009. Fuzzy multiple regression model for estimating software development time. Intl. J. Eng. Business Mgmt. 1(2): 79-82.
    • (2009) Intl. J. Eng. Business Mgmt. , vol.1 , Issue.2 , pp. 79-82
    • Marza, V.1    Seyyedi, M.A.2
  • 27
    • 84876829854 scopus 로고
    • MIRIS land use/cover polygon: Geographic data and metadata
    • East Lansing Mich.: Michigan State University, State Climatologist's Office, Climatological Resources Program. MIRIS Available at Accessed 22 September 2011
    • East Lansing, Mich.: Michigan State University, State Climatologist's Office, Climatological Resources Program. MIRIS. 1978. MIRIS land use/cover polygon: Geographic data and metadata. Lansing, Mich.: Michigan Department of Natural Resources, Michigan Resource Information System. Available at: www.mcgi.state.mi.us/mgdl/. Accessed 22 September 2011.
    • (1978) Lansing, Mich.: Michigan Department of Natural Resources, Michigan Resource Information System
  • 28
    • 77957355695 scopus 로고    scopus 로고
    • Explaining internal behavior in a fuzzy if-then rule-based flood-forecasting model
    • Nayak, P. C. 2010. Explaining internal behavior in a fuzzy if-then rule-based flood-forecasting model. J. Hydrol. Eng. 15(1): 20-28.
    • (2010) J Hydrol Eng , vol.151 , pp. 20-28
    • Nayak, P.C.1
  • 29
    • 14844352523 scopus 로고    scopus 로고
    • Fuzzy computing based rainfall-runoff model for real-time flood forecasting
    • Nayak, P. C., K. P. Sudheer, and K. S. Ramasastri. 2005. Fuzzy computing based rainfall-runoff model for real-time flood forecasting. Hydrol. Proc. 19(4): 955-968.
    • (2005) Hydrol. Proc. , vol.19 , Issue.4 , pp. 955-968
    • Nayak, P.C.1    Sudheer, K.P.2    Ramasastri, K.S.3
  • 30
    • 84876863036 scopus 로고    scopus 로고
    • Overview of rivers in Michigan
    • NORS Available at Accessed 22 September 2011
    • NORS. 1999. Overview of rivers in Michigan. Colorado Springs, Colo.: The National Organization for Rivers. Available at: www.nationalrivers.org/states/ mi-view.htm. Accessed 22 September 2011.
    • (1999) Colorado Springs, Colo.: The National Organization for Rivers
  • 31
    • 84876877618 scopus 로고    scopus 로고
    • Chapter 7: Hydrologic soil groups
    • NRCS Washington, D.C.: USDA Natural Resources Conservation Service Available at Accessed 22 September 2011 ftp://ftp.wcc.nrcs.usda.gov/wntsc/ H&H/NEH hydrology/ch7.pdf
    • NRCS. 2009. Chapter 7: Hydrologic soil groups. In National Engineering Handbook, Part 630: Hydrology. Washington, D.C.: USDA Natural Resources Conservation Service. Available at: ftp://ftp.wcc.nrcs.usda.gov/wntsc/H&H/ NEH hydrology/ch7.pdf. Accessed 22 September 2011.
    • (2009) National Engineering Handbook, Part 630: Hydrology
  • 33
    • 78650289914 scopus 로고    scopus 로고
    • Peterborough Ontario Canada: Watershed Science Centre Boca Raton, Fla.: CRC Press
    • Peterborough, Ontario, Canada: Watershed Science Centre. Sen, Z. 2010. Fuzzy Logic and Hydrological Modeling. Boca Raton, Fla.: CRC Press.
    • (2010) Fuzzy Logic and Hydrological Modeling
    • Sen, Z.1
  • 34
    • 37548999007 scopus 로고    scopus 로고
    • Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system
    • Shu, C., and T. B. M. J. Ouarda. 2008. Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. J. Hydrol. 349(1-2): 31-43.
    • (2008) J. Hydrol , vol.349 , Issue.1-2 , pp. 31-43
    • Shu, C.1    Ouarda, T.B.M.J.2
  • 35
    • 0035834944 scopus 로고    scopus 로고
    • Low flow hydrology: A review
    • Smakhtin, V. U. 2001. Low flow hydrology: A review. J. Hydrol. 240(1-2): 147-186.
    • (2001) J. Hydrol. , vol.240 , Issue.1-2 , pp. 147-186
    • Smakhtin, V.U.1
  • 36
    • 84876851898 scopus 로고    scopus 로고
    • State Of Michigan Lansing, Michigan: State of Michigan. Available at: Accessed 22 September 2011
    • State of Michigan. 2006. Public Acts of 2006: Act No. 33. Lansing, Michigan: State of Michigan. Available at: www.legislature.mi.gov/documents/ 2005-2006/publicact/pdf/ 2006-PA-0033.pdf. Accessed 22 September 2011.
    • (2006) Public Acts of 2006: Act No. 33
  • 37
    • 70349604899 scopus 로고    scopus 로고
    • Flow discharge modeling in open canals using a new fuzzy modeling technique (SMRGT)
    • Toprak, Z. F. 2009. Flow discharge modeling in open canals using a new fuzzy modeling technique (SMRGT). Clean: Soil Air Water 37(9): 742-752.
    • (2009) Clean: Soil Air Water , vol.37 , Issue.9 , pp. 742-752
    • Toprak, Z.F.1
  • 40
    • 79960208150 scopus 로고    scopus 로고
    • Manual on low-flow estimation and prediction
    • WMO Geneva, Switzerland: World Metrological Organization
    • WMO. 2008. Manual on low-flow estimation and prediction. Operational Hydrology Report No. 50 (WMO No. 1029). Geneva, Switzerland: World Metrological Organization.
    • (2008) Operational Hydrology Report No. 50 (WMO No. 1029)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.