|
Volumn 9, Issue 12, 2012, Pages 2027-2036
|
Combining the taguchi method with an artificial neural network to construct a multi-target prediction model for aluminum zinc oxide semiconducting transparent thin film
a b c |
Author keywords
Artificial Neural Network; AZO (ZnO:Al = 97:3 wt ); Resistivity; Semiconducting Transparent Thin Film; Transmittance
|
Indexed keywords
ALUMINUM ZINC OXIDES;
DEPOSITION PARAMETERS;
GLOBAL PREDICTIONS;
RADIO FREQUENCIES;
SUBSTRATE TEMPERATURE;
TRANSMITTANCE;
TRANSPARENT THIN FILM;
ZNO:AL;
ALUMINUM;
ELECTRIC CONDUCTIVITY;
FILM THICKNESS;
MATHEMATICAL MODELS;
NEURAL NETWORKS;
SUBSTRATES;
TAGUCHI METHODS;
THIN FILMS;
VAPOR DEPOSITION;
ZINC OXIDE;
DEPOSITION;
|
EID: 84876591530
PISSN: 15461955
EISSN: 15461963
Source Type: Journal
DOI: 10.1166/jctn.2012.2610 Document Type: Article |
Times cited : (7)
|
References (17)
|