메뉴 건너뛰기




Volumn 9, Issue 3, 2013, Pages 430-440

Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering

Author keywords

Biomimetic; Electrospun Nanofibers; Hydroxyapatite; Nano Bioglass; Tissue Engineering

Indexed keywords

BIOMIMETIC SCAFFOLDS; COMPARATIVE STUDIES; ELECTROSPUN NANOFIBERS; ELECTROSPUN SCAFFOLDS; EXTRACELLULAR MATRICES; HUMAN PERIODONTAL LIGAMENT; NANOFIBROUS SCAFFOLDS; OSTEOBLAST-LIKE CELLS;

EID: 84876587401     PISSN: 15507033     EISSN: 15507041     Source Type: Journal    
DOI: 10.1166/jbn.2013.1559     Document Type: Article
Times cited : (130)

References (53)
  • 1
    • 0027595948 scopus 로고
    • Tissue engineering
    • R. Langer and J. P. Vacanti, Tissue engineering. Science 260, 920 (1993).
    • (1993) Science , vol.260 , pp. 920
    • Langer, R.1    Vacanti, J.P.2
  • 3
    • 0017536938 scopus 로고
    • Collagen sponge: Theory and practice of medical applications
    • M. Chvapil, Collagen sponge: Theory and practice of medical applications. J. Biomed. Mater. Res. 11, 721 (1977).
    • (1977) J. Biomed. Mater. Res. , vol.11 , pp. 721
    • Chvapil, M.1
  • 4
    • 0032966423 scopus 로고    scopus 로고
    • De novo reconstitution of a functional mammalian urinary bladder by tissue engineering
    • F. Oberpenning, J. Meng, J. J. Yoo, and A. Atala, De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat. Biotechnol. 17, 149 (1999).
    • (1999) Nat. Biotechnol. , vol.17 , pp. 149
    • Oberpenning, F.1    Meng, J.2    Yoo, J.J.3    Atala, A.4
  • 5
    • 0033151411 scopus 로고    scopus 로고
    • Porous chitosan scaffolds for tissue engineering
    • S. V. Madihally and H. W. Matthew, Porous chitosan scaffolds for tissue engineering. Biomaterials 20, 1133 (1999).
    • (1999) Biomaterials , vol.20 , pp. 1133
    • Madihally, S.V.1    Matthew, H.W.2
  • 7
    • 0030199526 scopus 로고    scopus 로고
    • Novel approach to fabricate porous sponges of poly(D,L-lactic-coglycolic acid) without the use of organic solvents
    • D. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanti, and R. Langer, Novel approach to fabricate porous sponges of poly(D,L-lactic-coglycolic acid) without the use of organic solvents. Biomaterials 17, 1417 (1996).
    • (1996) Biomaterials , vol.17 , pp. 1417
    • Mooney, D.J.1    Baldwin, D.F.2    Suh, N.P.3    Vacanti, J.P.4    Langer, R.5
  • 8
    • 14844345396 scopus 로고    scopus 로고
    • Micropatterning of proteins and mammalian cells on biomaterials
    • Y. C. Wang and C. C. Ho, Micropatterning of proteins and mammalian cells on biomaterials. J. FASEB 18, 8 (2004).
    • (2004) J. FASEB , vol.18 , pp. 8
    • Wang, Y.C.1    Ho, C.C.2
  • 9
    • 0034672872 scopus 로고    scopus 로고
    • Scaffolds in tissue engineering bone and cartilage
    • D. W. Hutmacher, Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529 (2000).
    • (2000) Biomaterials , vol.21 , pp. 2529
    • Hutmacher, D.W.1
  • 10
    • 0038698794 scopus 로고    scopus 로고
    • Drawing a single nanofibre over hundreds of microns
    • T. Ondarcuhu and C. Joachim, Drawing a single nanofibre over hundreds of microns. Europhys. Lett. 42, 215 (1998).
    • (1998) Europhys. Lett. , vol.42 , pp. 215
    • Ondarcuhu, T.1    Joachim, C.2
  • 12
    • 0032949079 scopus 로고    scopus 로고
    • Synthetic nano-scale fibrous extracellular matrix
    • P. X. Ma and R. Zhang, Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. 46, 60 (1999).
    • (1999) J. Biomed. Mater. Res. , vol.46 , pp. 60
    • Ma, P.X.1    Zhang, R.2
  • 13
    • 0035941074 scopus 로고    scopus 로고
    • Self-assembly and mineralization of peptide-amphiphile nanofibers
    • J. D. Hartgerink, E. Beniash, and S. I. Stupp, Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684 (2001).
    • (2001) Science , vol.294 , pp. 1684
    • Hartgerink, J.D.1    Beniash, E.2    Stupp, S.I.3
  • 15
    • 77958111945 scopus 로고    scopus 로고
    • Three-dimensional scaffold of electrosprayed fibers with large pore size for tissue regeneration
    • K. H. Jong and V. M. Sundararajan, Three-dimensional scaffold of electrosprayed fibers with large pore size for tissue regeneration. Acta Biomater. 6, 4734 (2010).
    • (2010) Acta Biomater. , vol.6 , pp. 4734
    • Jong, K.H.1    Sundararajan, V.M.2
  • 16
    • 84941944801 scopus 로고    scopus 로고
    • Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro
    • L. Shor, S. Guceri, X. Wen, M. Gandhi, and W. Sun, Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28, 5291 (2007).
    • (2007) Biomaterials , vol.28 , pp. 5291
    • Shor, L.1    Guceri, S.2    Wen, X.3    Gandhi, M.4    Sun, W.5
  • 17
    • 0026059172 scopus 로고
    • Physico-mechanical properties of degradable polymers used in medical applications: A comparative study
    • E. Israel and K. Joachim, Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials 12, 292 (1991).
    • (1991) Biomaterials , vol.12 , pp. 292
    • Israel, E.1    Joachim, K.2
  • 20
    • 0037409924 scopus 로고    scopus 로고
    • Implantable applications of chitin and chitosan
    • K. Eugene and Y. L. Lee, Implantable applications of chitin and chitosan. Biomaterials 24, 2339 (2003).
    • (2003) Biomaterials , vol.24 , pp. 2339
    • Eugene, K.1    Lee, Y.L.2
  • 21
    • 71249135885 scopus 로고    scopus 로고
    • Novel chitin and chitosan nanofibers in biomedical applications
    • R. Jayakumar, M. Prabaharan, S. V. Nair, and H. Tamura, Novel chitin and chitosan nanofibers in biomedical applications. Biotech. Adv. 28, 142 (2010).
    • (2010) Biotech. Adv. , vol.28 , pp. 142
    • Jayakumar, R.1    Prabaharan, M.2    Nair, S.V.3    Tamura, H.4
  • 22
    • 84876593152 scopus 로고    scopus 로고
    • Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: Assessment of the physical properties and cellular response
    • T. Nuttawut, N. Thongchai, P. Wachirapan, S. Srisurang, and K. C. Lim, Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: Assessment of the physical properties and cellular response. Biomed. Mater. 6, 9 (2011).
    • (2011) Biomed. Mater. , vol.6 , pp. 9
    • Nuttawut, T.1    Thongchai, N.2    Wachirapan, P.3    Srisurang, S.4    Lim, K.C.5
  • 24
    • 33745008215 scopus 로고    scopus 로고
    • In vitro evaluation of chitosan/ poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering
    • J. Tao, I. A. Wafa, and T. L. Cato, In vitro evaluation of chitosan/ poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials 27, 4894 (2006).
    • (2006) Biomaterials , vol.27 , pp. 4894
    • Tao, J.1    Wafa, I.A.2    Cato, T.L.3
  • 25
    • 0029843289 scopus 로고    scopus 로고
    • Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in Vitro
    • P. R. Klokkevold, L. Vandemark, E. B. Kenny, and G. W. Bernard, Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. J. Periodontol. 67, 1170 (1996).
    • (1996) J. Periodontol. , vol.67 , pp. 1170
    • Klokkevold, P.R.1    Vandemark, L.2    Kenny, E.B.3    Bernard, G.W.4
  • 27
    • 34547464052 scopus 로고    scopus 로고
    • Preparation and characterization of polycaprolactone-chitosan composites for tissue engineering applications
    • S. Houde, X. Xiufeng, and L. Rongfang, Preparation and characterization of polycaprolactone-chitosan composites for tissue engineering applications. J. Mater. Sci. 42, 8113 (2006).
    • (2006) J. Mater. Sci. , vol.42 , pp. 8113
    • Houde, S.1    Xiufeng, X.2    Rongfang, L.3
  • 28
    • 77249173700 scopus 로고    scopus 로고
    • Single step electrospinning of chitosan/ polycaprolactone nanofibers using formic acid/acetone solvent system
    • K. T. Shalumon, K. H. Anulekha, C. M. Girish, R. Prashanth, S. V. Nair, and R. Jayakumar, Single step electrospinning of chitosan/ polycaprolactone nanofibers using formic acid/acetone solvent system. Carbohydr. Polym. 80, 413 (2010).
    • (2010) Carbohydr. Polym. , vol.80 , pp. 413
    • Shalumon, K.T.1    Anulekha, K.H.2    Girish, C.M.3    Prashanth, R.4    Nair, S.V.5    Jayakumar, R.6
  • 29
    • 0343340127 scopus 로고    scopus 로고
    • Properties of thermoplastic blends: Starch-polycaprolactone
    • L. Averous, L. Moro, P. Dole, and C. Fringant, Properties of thermoplastic blends: Starch-polycaprolactone. Polymer 41, 4157 (2000).
    • (2000) Polymer , vol.41 , pp. 4157
    • Averous, L.1    Moro, L.2    Dole, P.3    Fringant, C.4
  • 30
    • 17844390359 scopus 로고    scopus 로고
    • Characterization of chitosanpolycaprolactone blends for tissue engineering
    • S. Aparna and V. M. Sundararajan, Characterization of chitosanpolycaprolactone blends for tissue engineering. Biomaterials 26, 5500 (2005).
    • (2005) Biomaterials , vol.26 , pp. 5500
    • Aparna, S.1    Sundararajan, V.M.2
  • 31
    • 77957756749 scopus 로고    scopus 로고
    • Aligned chitosan-based nanofibers for enhanced myogenesis
    • C. Ashleigh, J. Soumen, B. Narayan, and Z. Miqin, Aligned chitosan-based nanofibers for enhanced myogenesis. J. Mater. Chem. 20, 8904 (2010).
    • (2010) J. Mater. Chem. , vol.20 , pp. 8904
    • Ashleigh, C.1    Soumen, J.2    Narayan, B.3    Miqin, Z.4
  • 32
    • 42649127738 scopus 로고    scopus 로고
    • Blending polysaccharides with biodegradable polymers I. Properties of chitosan/polycaprolactone blends
    • C. D. Garcia, R. J. L. Gomez, and S. M. Salmeron, Blending polysaccharides with biodegradable polymers I. Properties of chitosan/polycaprolactone blends. J. Biomed. Mater. Res. B. Appl. Biomater. 85, 303 (2008).
    • (2008) J. Biomed. Mater. Res. B. Appl. Biomater. , vol.85 , pp. 303
    • Garcia, C.D.1    Gomez, R.J.L.2    Salmeron, S.M.3
  • 33
    • 0035110233 scopus 로고    scopus 로고
    • Transport properties of chitosan and whey blended with poly(epsilon-caprolactone) assessed by standard permeability measurements and microcalorimetry
    • I. Olabarrieta, D. Forsstrom, U. W. Gedde, and M. S. Hedenqvist, Transport properties of chitosan and whey blended with poly(epsilon- caprolactone) assessed by standard permeability measurements and microcalorimetry. Polymer 42, 4401 (2001).
    • (2001) Polymer , vol.42 , pp. 4401
    • Olabarrieta, I.1    Forsstrom, D.2    Gedde, U.W.3    Hedenqvist, M.S.4
  • 36
    • 29144520623 scopus 로고    scopus 로고
    • Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration
    • H. W. Kim, J. H. Song, and H. E. Kim, Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv. Funct. Mater. 15, 1988 (2005).
    • (2005) Adv. Funct. Mater. , vol.15 , pp. 1988
    • Kim, H.W.1    Song, J.H.2    Kim, H.E.3
  • 37
    • 78649456732 scopus 로고    scopus 로고
    • Preparation, characterization and cell attachment studies of electrospun multi-scale poly(caprolactone) fibrous scaffolds for tissue engineering
    • K. T. Shalumon, N. S. Binulal, M. Deepthy, R. Jayakumar, K. Manzoor, and S. V. Nair, Preparation, characterization and cell attachment studies of electrospun multi-scale poly(caprolactone) fibrous scaffolds for tissue engineering. J. Macromol. Sci. A. Pure Appl. Chem. 48, 1 (2010).
    • (2010) J. Macromol. Sci. A. Pure Appl. Chem. , vol.48 , pp. 1
    • Shalumon, K.T.1    Binulal, N.S.2    Deepthy, M.3    Jayakumar, R.4    Manzoor, K.5    Nair, S.V.6
  • 38
    • 69749105596 scopus 로고    scopus 로고
    • Development of novel β-chitin/nanobioactive glass ceramic composite scaffolds for tissue engineering applications
    • M. Peter, P. T. Sudheesh Kumar, N. S. Binulal, S. V. Nair, H. Tamura, and R. Jayakumar, Development of novel β-chitin/nanobioactive glass ceramic composite scaffolds for tissue engineering applications. Carbohy. Polym. 17, 926 (2009).
    • (2009) Carbohy. Polym. , vol.17 , pp. 926
    • Peter, M.1    Sudheesh Kumar, P.T.2    Binulal, N.S.3    Nair, S.V.4    Tamura, H.5    Jayakumar, R.6
  • 39
    • 80054769541 scopus 로고    scopus 로고
    • Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration
    • S. Sowmya, R. Jayasree, K. P. Chennazhi, S. V. Nair, and R. Jayakumar, Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr. Polym. 87, 274 (2012).
    • (2012) Carbohydr. Polym. , vol.87 , pp. 274
    • Sowmya, S.1    Jayasree, R.2    Chennazhi, K.P.3    Nair, S.V.4    Jayakumar, R.5
  • 40
    • 79956257420 scopus 로고    scopus 로고
    • Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering
    • J. M. Fernandez, M. S. Molinuevo, M. S. Cortizo, and A. M. Cortizo, Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. J. Tissue Eng. Regen. Med. 5, 126 (2011).
    • (2011) J. Tissue Eng. Regen. Med. , vol.5 , pp. 126
    • Fernandez, J.M.1    Molinuevo, M.S.2    Cortizo, M.S.3    Cortizo, A.M.4
  • 41
    • 33947543328 scopus 로고    scopus 로고
    • Fabrication and in vitro biomineralization of bioactive glass (BG) nanofibers
    • W. Xia, D. M. Zhang, and J. Chang, Fabrication and in vitro biomineralization of bioactive glass (BG) nanofibers. Nanotechnology 18, 13 (2007).
    • (2007) Nanotechnology , vol.18 , pp. 13
    • Xia, W.1    Zhang, D.M.2    Chang, J.3
  • 42
    • 0036020404 scopus 로고    scopus 로고
    • Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications
    • J. A. Roether, A. R. Boccaccini, L. L. Hench, V. Maquet, S. Gautier, and R. Jerome, Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications. Biomaterials 23, 3871 (2002).
    • (2002) Biomaterials , vol.23 , pp. 3871
    • Roether, J.A.1    Boccaccini, A.R.2    Hench, L.L.3    Maquet, V.4    Gautier, S.5    Jerome, R.6
  • 44
    • 84861511549 scopus 로고    scopus 로고
    • Fabrication of 3D nano, micro and micro/nano scaffolds of porous poly(Lactic acid) by electrospinning and comparison of cell infiltration by Z-stacking/3D projection technique
    • K. T. Shalumon, K. P. Chennazhi, H. Tamura, K. Kawahara, S. V. Nair, and R. Jayakumar, Fabrication of 3D nano, micro and micro/nano scaffolds of porous poly(Lactic acid) by electrospinning and comparison of cell infiltration by Z-stacking/3D projection technique. IET Nanobiotech. 6, 16 (2012).
    • (2012) IET Nanobiotech. , vol.6 , pp. 16
    • Shalumon, K.T.1    Chennazhi, K.P.2    Tamura, H.3    Kawahara, K.4    Nair, S.V.5    Jayakumar, R.6
  • 45
    • 33645037154 scopus 로고    scopus 로고
    • Glass and bioglass nanopowders by flame synthesis
    • T. J. Brunner, R. N. Grass, and W. J. Stark, Glass and bioglass nanopowders by flame synthesis. Chem. Comm. 13, 1384 (2006).
    • (2006) Chem. Comm. , vol.13 , pp. 1384
    • Brunner, T.J.1    Grass, R.N.2    Stark, W.J.3
  • 49
    • 77956784646 scopus 로고    scopus 로고
    • Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation
    • N. C. Hunt, A. M. Smith, U. Gbureck, R. M. Shelton, and L. M. Grover, Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation. Acta Biomater. 6, 3649 (2010).
    • (2010) Acta Biomater. , vol.6 , pp. 3649
    • Hunt, N.C.1    Smith, A.M.2    Gbureck, U.3    Shelton, R.M.4    Grover, L.M.5
  • 50
    • 0031303339 scopus 로고    scopus 로고
    • Osteoblast-like properties of human periodontal ligament cells: An in vitro analysis
    • E. K. Basdra and G. Komposch, Osteoblast-like properties of human periodontal ligament cells: An in vitro analysis. Eur. J. Orthodont. 19, 615 (1997).
    • (1997) Eur. J. Orthodont. , vol.19 , pp. 615
    • Basdra, E.K.1    Komposch, G.2
  • 52
    • 0034710842 scopus 로고    scopus 로고
    • Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis
    • I. D. Xynos, A. J. Edgar, L. D. K. Buttery, L. L. Hench, and J. M. Polak, Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem. Biophys. Res. Commun. 276, 461 (2000).
    • (2000) Biochem. Biophys. Res. Commun. , vol.276 , pp. 461
    • Xynos, I.D.1    Edgar, A.J.2    Buttery, L.D.K.3    Hench, L.L.4    Polak, J.M.5
  • 53
    • 80655146780 scopus 로고    scopus 로고
    • Hydroxyapatite-coated carboxymethyl chitosan scaffolds for promoting osteoblast and stem cell differentiation
    • R. Budiraharjo, K. G. Neoh, and E. T. Kang, Hydroxyapatite-coated carboxymethyl chitosan scaffolds for promoting osteoblast and stem cell differentiation. J. Colloid Interf. Sci. 366, 224 (2012).
    • (2012) J. Colloid Interf. Sci. , vol.366 , pp. 224
    • Budiraharjo, R.1    Neoh, K.G.2    Kang, E.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.