-
1
-
-
0347084839
-
On a generalized gamma-type distribution with τ-confluent hypergeometric function
-
Al-Zamel A (2001) On a generalized gamma-type distribution with τ-confluent hypergeometric function. Kuwait J Sci Engrg 28:25-36
-
(2001)
Kuwait J Sci Engrg
, vol.28
, pp. 25-36
-
-
Al-Zamel, A.1
-
2
-
-
0042793291
-
A generalized inverse Gaussian distribution with τ-confluent hypergeometric function
-
Ali I, Kalla SL, Khajah HG (2001) A generalized inverse Gaussian distribution with τ-confluent hypergeometric function. Integral Transforms Spec Funct 12:101-114
-
(2001)
Integral Transforms Spec Funct
, vol.12
, pp. 101-114
-
-
Ali, I.1
Kalla, S.L.2
Khajah, H.G.3
-
3
-
-
70349526348
-
Sums and partial sums of double power series associated with the generalized Zeta function and their N-Fractional calculus
-
Bin-Saad MG (2007) Sums and partial sums of double power series associated with the generalized Zeta function and their N-Fractional calculus. Math J Okayama Univ 49:37-52
-
(2007)
Math J Okayama Univ
, vol.49
, pp. 37-52
-
-
Bin-Saad, M.G.1
-
4
-
-
33845368302
-
The H-function associated with a certain class of Feynman integrals
-
Buschman RG, Srivastava HM (1990) The H-function associated with a certain class of Feynman integrals. J Phys A: Math Gen 23:4707-4710
-
(1990)
J Phys A: Math Gen
, vol.23
, pp. 4707-4710
-
-
Buschman, R.G.1
Srivastava, H.M.2
-
6
-
-
0003864328
-
-
McGraw-Hill Book Company, New York, Toronto and London
-
Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG (1953) Higher Transcendental Functions, Vol. I. McGraw-Hill Book Company, New York, Toronto and London
-
(1953)
Higher Transcendental Functions
, vol.I
-
-
Erdélyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
7
-
-
0003438193
-
-
McGraw-Hill Book Company, New York, Toronto and London
-
Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG (1954) Tables of Integral Transforms, Vol. II. McGraw-Hill Book Company, New York, Toronto and London
-
(1954)
Tables of Integral Transforms
, vol.II
-
-
Erdélyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
8
-
-
79955464613
-
A further study of general Hurwitz-Lerch Zeta function
-
Garg M, Jain K, Kalla SL (2008) A further study of general Hurwitz-Lerch Zeta function. Algebras Groups Geom. 25:311-319
-
(2008)
Algebras Groups Geom.
, vol.25
, pp. 311-319
-
-
Garg, M.1
Jain, K.2
Kalla, S.L.3
-
9
-
-
33749589040
-
Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions
-
Garg M, Jain K, Srivastava HM (2006) Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions. Integral Transforms Spec Funct 17:803-815
-
(2006)
Integral Transforms Spec Funct
, vol.17
, pp. 803-815
-
-
Garg, M.1
Jain, K.2
Srivastava, H.M.3
-
10
-
-
3042834009
-
On the generalized Zeta function and the generalized Lambert function
-
Goyal SP, Laddha RK (1997) On the generalized Zeta function and the generalized Lambert function. Gȧnita Sandesh 11:99-108
-
(1997)
Gȧnita Sandesh
, vol.11
, pp. 99-108
-
-
Goyal, S.P.1
Laddha, R.K.2
-
11
-
-
84876522415
-
Some results on a τ-generalized Riemann Zeta function
-
Gupta RK, Kumari M (2011) Some results on a τ-generalized Riemann Zeta function. Jñ-an-abha 41:63-68
-
(2011)
Jñ-an-abha
, vol.41
, pp. 63-68
-
-
Gupta, R.K.1
Kumari, M.2
-
12
-
-
38649091739
-
A class of Hurwitz-Lerch Zeta distributions and their applications in reliability
-
Gupta PL, Gupta RC, Ong S-H, Srivastava HM (2008) A class of Hurwitz-Lerch Zeta distributions and their applications in reliability. Appl Math Comput 196:521-531
-
(2008)
Appl Math Comput
, vol.196
, pp. 521-531
-
-
Gupta, P.L.1
Gupta, R.C.2
Ong, S.-H.3
Srivastava, H.M.4
-
13
-
-
0007270304
-
New properties of hypergeometric series derivable from Feynman integrals. I: Transformation and reduction formulae
-
Inayat-Hussain AA (1987a) New properties of hypergeometric series derivable from Feynman integrals. I: Transformation and reduction formulae. J Phys A: Math Gen 20:4109-4117
-
(1987)
J Phys A: Math Gen
, vol.20
, pp. 4109-4117
-
-
Inayat-Hussain, A.A.1
-
14
-
-
33845372007
-
New properties of hypergeometric series derivable from Feynman integrals. II: A generalization of the H-function
-
Inayat-Hussain AA (1987b) New properties of hypergeometric series derivable from Feynman integrals. II: A generalization of the H-function. J Phys A: Math Gen 20:4119-4128
-
(1987)
J Phys A: Math Gen
, vol.20
, pp. 4119-4128
-
-
Inayat-Hussain, A.A.1
-
15
-
-
79955474305
-
An extended general Hurwitz-Lerch Zeta function as a Mathieu (a, λ)-series
-
Jankov D, Pogány TK, Saxena RK (2011) An extended general Hurwitz-Lerch Zeta function as a Mathieu (a, λ)-series. Appl Math Lett 24:1473-1476
-
(2011)
Appl Math Lett
, vol.24
, pp. 1473-1476
-
-
Jankov, D.1
Pogány, T.K.2
Saxena, R.K.3
-
16
-
-
0007191331
-
On Mellin-Barnes type of integrals and sums associated with the Riemann Zetafunction
-
Katsurada M (1997) On Mellin-Barnes type of integrals and sums associated with the Riemann Zetafunction. Publ Inst Math (Beograd) (Nouvelle Ser) 62(76):13-25
-
(1997)
Publ Inst Math (Beograd) (Nouvelle Ser)
, vol.62
, Issue.76
, pp. 13-25
-
-
Katsurada, M.1
-
18
-
-
77956684069
-
-
Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York
-
Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204. Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York
-
(2006)
Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies
, vol.204
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
19
-
-
3042752343
-
Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations
-
Lin S-D, Srivastava HM (2004) Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations. Appl Math Comput 154:725-733
-
(2004)
Appl Math Comput
, vol.154
, pp. 725-733
-
-
Lin, S.-D.1
Srivastava, H.M.2
-
20
-
-
33749664753
-
Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions
-
Lin S-D, Srivastava HM, Wang P-Y (2006) Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions. Integral Transforms Spec Funct 17:817-827
-
(2006)
Integral Transforms Spec Funct
, vol.17
, pp. 817-827
-
-
Lin, S.-D.1
Srivastava, H.M.2
Wang, P.-Y.3
-
21
-
-
84891408876
-
-
Springer, New York, Dordrecht, Heidelberg and London
-
Mathai AM, Saxena RK, Haubold HJ (2010) The H-Function: Theory and Applications. Springer, New York, Dordrecht, Heidelberg and London
-
(2010)
The H-Function: Theory and Applications
-
-
Mathai, A.M.1
Saxena, R.K.2
Haubold, H.J.3
-
22
-
-
3042829374
-
Some integral forms for a generalized Zeta function
-
Nishimoto K, Yen C-E, Lin M-L (2002) Some integral forms for a generalized Zeta function. J Fract Calc 22:91-97
-
(2002)
J Fract Calc
, vol.22
, pp. 91-97
-
-
Nishimoto, K.1
Yen, C.-E.2
Lin, M.-L.3
-
23
-
-
36949010134
-
A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function
-
Řaducanu D, Srivastava HM (2007) A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function. Integral Transforms Spec Funct 18:933-943
-
(2007)
Integral Transforms Spec Funct
, vol.18
, pp. 933-943
-
-
Řaducanu, D.1
Srivastava, H.M.2
-
24
-
-
0003598078
-
-
Gordon and Breach Science Publishers, Reading, Tokyo, Paris, Berlin and Langhorne (Pennsylvania)
-
Samko SG, Kilbas AA, Marichev OI (1993) Fractional Integrals and Derivatives: Theory and Applications, Translated from the Russian: Integrals and Derivatives of Fractional Order and Some of Their Applications ("Nauka i Tekhnika", Minsk, 1987). Gordon and Breach Science Publishers, Reading, Tokyo, Paris, Berlin and Langhorne (Pennsylvania)
-
(1993)
Fractional Integrals and Derivatives: Theory and Applications, Translated from the Russian: Integrals and Derivatives of Fractional Order and Some of Their Applications ("Nauka i Tekhnika", Minsk, 1987)
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
-
25
-
-
80052671107
-
A remark on a paper on M-series [MR2401326 (2009b:26008)]. With an editorial note
-
Saxana RK (2009) A remark on a paper on M-series [MR2401326 (2009b:26008)]. With an editorial note. Fract Calc Appl Anal 12:109-110
-
(2009)
Fract Calc Appl Anal
, vol.12
, pp. 109-110
-
-
Saxana, R.K.1
-
26
-
-
84876533532
-
Integrals and series expansions of the τ-generalized Riemann Zeta function
-
Saxena RK, Gupta RK, KumariM(2011a) Integrals and series expansions of the τ-generalized Riemann Zeta function. J Indian Acad Math 33:309-320
-
(2011)
J Indian Acad Math
, vol.33
, pp. 309-320
-
-
Saxena, R.K.1
Gupta, R.K.2
Kumari, M.3
-
28
-
-
79551616683
-
Fractional integration and fractional differentiation of the M-series
-
Sharma M (2008) Fractional integration and fractional differentiation of the M-series. Fract Calc Appl Anal 11:187-191
-
(2008)
Fract Calc Appl Anal
, vol.11
, pp. 187-191
-
-
Sharma, M.1
-
29
-
-
79251576218
-
A note on a generalzed M-series as a special function of fractional calculus
-
Sharma M, Jain R (2009) A note on a generalzed M-series as a special function of fractional calculus. Fract Calc Appl Anal 12:449-452
-
(2009)
Fract Calc Appl Anal
, vol.12
, pp. 449-452
-
-
Sharma, M.1
Jain, R.2
-
30
-
-
38249026905
-
Sums of certain series of the Riemann Zeta function
-
Srivastava HM (1988a) Sums of certain series of the Riemann Zeta function. J Math Anal Appl 134:129-140
-
(1988)
J Math Anal Appl
, vol.134
, pp. 129-140
-
-
Srivastava, H.M.1
-
31
-
-
0002676205
-
A unified presentation of certain classes of series of the Riemann Zeta function
-
Srivastava HM (1988b) A unified presentation of certain classes of series of the Riemann Zeta function. Riv Mat Univ Parma (Ser. 4) 14:1-23
-
(1988)
Riv Mat Univ Parma (Ser. 4)
, vol.14
, pp. 1-23
-
-
Srivastava, H.M.1
-
32
-
-
23044520680
-
Some formulas for the Bernoulli and Euler polynomials at rational arguments
-
Srivastava HM (2000) Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math Proc Cambridge Philos Soc 129:77-84
-
(2000)
Math Proc Cambridge Philos Soc
, vol.129
, pp. 77-84
-
-
Srivastava, H.M.1
-
33
-
-
84857133939
-
Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials
-
Srivastava HM (2011) Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl Math Inform Sci 5:390-444
-
(2011)
Appl Math Inform Sci
, vol.5
, pp. 390-444
-
-
Srivastava, H.M.1
-
36
-
-
77953460296
-
A new generalization of the Bernoulli and related polynomials
-
Srivastava HM, Garg M, Choudhary S (2010) A new generalization of the Bernoulli and related polynomials, Russian J Math Phys 17:251-261
-
(2010)
Russian J Math Phys
, vol.17
, pp. 251-261
-
-
Srivastava, H.M.1
Garg, M.2
Choudhary, S.3
-
39
-
-
79959353095
-
-
John Wiley and Sons, New York, Chichester, Brisbane and Toronto
-
Srivastava HM, Karlsson PW (1985) Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester). John Wiley and Sons, New York, Chichester, Brisbane and Toronto
-
(1985)
Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester)
-
-
Srivastava, H.M.1
Karlsson, P.W.2
-
40
-
-
33845355798
-
Some fractional-calculus results for the H-function associated with a class of Feynman integrals
-
Srivastava HM, Lin S-D, Wang P-Y (2006) Some fractional-calculus results for the H-function associated with a class of Feynman integrals. Russian J Math Phys 13:94-100
-
(2006)
Russian J Math Phys
, vol.13
, pp. 94-100
-
-
Srivastava, H.M.1
Lin, S.-D.2
Wang, P.-Y.3
-
41
-
-
0004162942
-
-
Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto
-
Srivastava HM, Manocha HL (1984) A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto
-
(1984)
A Treatise on Generating Functions
-
-
Srivastava, H.M.1
Manocha, H.L.2
-
44
-
-
0001847762
-
A proof of Burnside's formula for log Γ(x + 1) and certain allied properties of Riemann's ζ-function
-
Wilton JR (1922/1923) A proof of Burnside's formula for log Γ(x + 1) and certain allied properties of Riemann's ζ-function. Messenger Math 52:90-93.
-
(1922)
Messenger Math
, vol.52
, pp. 90-93
-
-
Wilton, J.R.1
-
45
-
-
3042716395
-
An integral form for a generalized Zeta function
-
Yen C-E, Lin M-L, Nishimoto K (2002) An integral form for a generalized Zeta function. J Fract Calc 23:99-102
-
(2002)
J Fract Calc
, vol.23
, pp. 99-102
-
-
Yen, C.-E.1
Lin, M.-L.2
Nishimoto, K.3
|