-
1
-
-
0142164506
-
The asymptotic expansion of integral functions defined by Taylor series
-
E.W. Barnes, The asymptotic expansion of integral functions defined by Taylor series, Philos. Trans. Roy. Soc. London. Ser. A 206 (1906), pp. 249-297.
-
(1906)
Philos. Trans. Roy. Soc. London. Ser. A
, vol.206
, pp. 249-297
-
-
Barnes, E.W.1
-
2
-
-
33845368302
-
The H-function associated with a certain class of Feynman integrals
-
R.G. Buschman and H.M. Srivastava, The H-function associated with a certain class of Feynman integrals, J. Phys. A: Math. Gen. 23 (1990), pp. 4707-4710.
-
(1990)
J. Phys. A: Math. Gen
, vol.23
, pp. 4707-4710
-
-
Buschman, R.G.1
Srivastava, H.M.2
-
3
-
-
38649112916
-
A generalization of the Hurwitz-Lerch Zeta function
-
J. Choi, D.S. Jang, and H.M. Srivastava, A generalization of the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 19 (2008), pp. 65-79.
-
(2008)
Integral Transforms Spec. Funct
, vol.19
, pp. 65-79
-
-
Choi, J.1
Jang, D.S.2
Srivastava, H.M.3
-
4
-
-
0003864328
-
-
McGraw-Hill Book Company, NewYork, Toronto and London
-
A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill Book Company, NewYork, Toronto and London, 1953.
-
(1953)
Higher Transcendental Functions
, vol.1
-
-
Erdélyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
5
-
-
0003438193
-
-
McGraw-Hill Book Company, NewYork, Toronto and London
-
A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Tables of Integral Transforms, Vol. 2, McGraw-Hill Book Company, NewYork, Toronto and London, 1954.
-
(1954)
Tables of Integral Transforms
, vol.2
-
-
Erdélyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
6
-
-
0003864328
-
-
McGraw-Hill Book Company, NewYork, Toronto and London
-
A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions,Vol. 3, McGraw-Hill Book Company, NewYork, Toronto and London, 1955.
-
(1955)
Higher Transcendental Functions
, vol.3
-
-
Erdélyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
7
-
-
79955464613
-
A further study of general Hurwitz-Lerch zeta function
-
M. Garg, K. Jain, and S.L. Kalla, A further study of general Hurwitz-Lerch zeta function, Algebras Groups Geom. 25 (2008), pp. 311-319.
-
(2008)
Algebras Groups Geom
, vol.25
, pp. 311-319
-
-
Garg, M.1
Jain, K.2
Kalla, S.L.3
-
8
-
-
33749589040
-
Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions
-
M. Garg, K. Jain, and H.M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions, Integral Transforms Spec. Funct. 17 (2006), pp. 803-815.
-
(2006)
Integral Transforms Spec. Funct
, vol.17
, pp. 803-815
-
-
Garg, M.1
Jain, K.2
Srivastava, H.M.3
-
9
-
-
3042834009
-
On the generalized Zeta function and the generalized Lambert function
-
S.P. Goyal and R.K. Laddha, On the generalized Zeta function and the generalized Lambert function, Gan. ita Sandesh 11 (1997), pp. 99-108.
-
(1997)
Gan. Ita Sandesh
, vol.11
, pp. 99-108
-
-
Goyal, S.P.1
Laddha, R.K.2
-
10
-
-
34547453599
-
New properties of the hypergeoemtric series associated with Feynman integrals
-
K.C. Gupta and R.C. Soni, New properties of the hypergeoemtric series associated with Feynman integrals, Kyungpook Math. J. 41 (2001), pp. 97-104.
-
(2001)
Kyungpook Math. J
, vol.41
, pp. 97-104
-
-
Gupta, K.C.1
Soni, R.C.2
-
11
-
-
38649091739
-
A class of Hurwitz-Lerch Zeta distributions and their applications in reliability
-
P.L. Gupta, R.C. Gupta, S.-H. Ong, and H.M. Srivastava, A class of Hurwitz-Lerch Zeta distributions and their applications in reliability, Appl. Math. Comput. 196 (2008), pp. 521-531.
-
(2008)
Appl. Math. Comput
, vol.196
, pp. 521-531
-
-
Gupta, P.L.1
Gupta, R.C.2
Ong, S.-H.3
Srivastava, H.M.4
-
12
-
-
0007270304
-
New properties of hypergeometric series derivable from Feynman integrals. I: Transformation and reduction formulae
-
A.A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals. I: Transformation and reduction formulae, J. Phys. A: Math. Gen. 20 (1987), pp. 4109-4117.
-
(1987)
J. Phys. A: Math. Gen
, vol.20
, pp. 4109-4117
-
-
Inayat-Hussain, A.A.1
-
13
-
-
33845372007
-
Newproperties of hypergeometric series derivable from Feynman integrals. II:A generalization of the H-function
-
A.A. Inayat-Hussain, Newproperties of hypergeometric series derivable from Feynman integrals. II:A generalization of the H-function, J. Phys. A: Math. Gen. 20 (1987), pp. 4119-4128.
-
(1987)
J. Phys. A: Math. Gen
, vol.20
, pp. 4119-4128
-
-
Inayat-Hussain, A.A.1
-
14
-
-
79959371516
-
Extended general Hurwitz-Lerch Zeta function as Mathieu (a, λ)-series
-
submitted for publication
-
D. Jankov, T.K. Pogány, and R.K. Saxena, Extended general Hurwitz-Lerch Zeta function as Mathieu (a, λ)-series, Appl. Math. Lett., submitted for publication.
-
Appl. Math. Lett
-
-
Jankov, D.1
Pogány, T.K.2
Saxena, R.K.3
-
15
-
-
77956684069
-
-
North-Holland Mathematical Studies, Elsevier (North-Holland) Science Publishers, Amsterdam, London and NewYork
-
A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and NewYork, 2006.
-
(2006)
Theory and Applications of Fractional Differential Equations
, vol.204
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
16
-
-
3042752343
-
Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations
-
S.-D. Lin and H.M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), pp. 725-733.
-
(2004)
Appl. Math. Comput
, vol.154
, pp. 725-733
-
-
Lin, S.-D.1
Srivastava, H.M.2
-
17
-
-
33749664753
-
Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions
-
S.-D. Lin, H.M. Srivastava, and P.-Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Integral Transforms Spec. Funct. 17 (2006), pp. 817-827.
-
(2006)
Integral Transforms Spec. Funct
, vol.17
, pp. 817-827
-
-
Lin, S.-D.1
Srivastava, H.M.2
Wang, P.-Y.3
-
18
-
-
84891408876
-
-
New York, Dordrecht, Heidelberg and London
-
A.M. Mathai, R.K. Saxena, and H.J. Haubold, The H-Function: Theory and Applications, Springer, New York, Dordrecht, Heidelberg and London, 2010.
-
(2010)
The H-Function: Theory and Applications, Springer
-
-
Mathai, A.M.1
Saxena, R.K.2
Haubold, H.J.3
-
19
-
-
3042829374
-
Some integral forms for a generalized Zeta function
-
K. Nishimoto, C.-E Yen, and M.-L. Lin, Some integral forms for a generalized Zeta function, J. Fract. Calc. 22 (2002), pp. 91-97.
-
(2002)
J. Fract. Calc
, vol.22
, pp. 91-97
-
-
Nishimoto, K.1
Yen, C.-E.2
Lin, M.-L.3
-
20
-
-
36949010134
-
A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function
-
D. Rǎducanu and H.M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 18 (2007), pp. 933-943.
-
(2007)
Integral Transforms Spec. Funct
, vol.18
, pp. 933-943
-
-
Rǎducanu, D.1
Srivastava, H.M.2
-
21
-
-
0003598078
-
-
Gordon and Breach Science Publishers, Reading, Tokyo, Paris, Berlin and Langhorne (Pennsylvania),
-
S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Translated from the Russian: Integrals and Derivatives of Fractional Order and Some of their Applications ('Nauka ITekhnika', Minsk, 1987), Gordon and Breach Science Publishers, Reading, Tokyo, Paris, Berlin and Langhorne (Pennsylvania), 1993.
-
(1993)
Fractional Integrals and Derivatives: Theory and Applications, Translated From the Russian: Integrals and Derivatives of Fractional Order and Some of their Applications ('Nauka ITekhnika', Minsk, 1987)
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
-
22
-
-
77957223814
-
Functional relations involving generalizedH-function
-
R.K. Saxena, Functional relations involving generalizedH-function, Matematiche (Catania) 53 (1998), pp. 123-131.
-
(1998)
Matematiche (Catania)
, vol.53
, pp. 123-131
-
-
Saxena, R.K.1
-
23
-
-
79959352612
-
A complex inversion theorem for a modified H-transformation of distributions, Indian
-
R.K. Saxena and N. Gupta, A complex inversion theorem for a modified H-transformation of distributions, Indian J. Pure Appl. Math. 26 (1995), pp. 1111-1117.
-
(1995)
J. Pure Appl. Math
, vol.26
, pp. 1111-1117
-
-
Saxena, R.K.1
Gupta, N.2
-
24
-
-
77957224078
-
On unified fractional integration operators
-
R.K. Saxena and M.K. Soni, On unified fractional integration operators, Math. Balkanica 11 (1997), pp. 69-77.
-
(1997)
Math. Balkanica
, vol.11
, pp. 69-77
-
-
Saxena, R.K.1
Soni, M.K.2
-
25
-
-
79959335404
-
Unified fractional integral formulas for the generalized H-function
-
R.K. Saxena, J. Ram, and S.L. Kalla, Unified fractional integral formulas for the generalized H-function, Rev. Acad. Canaria Cienc. 14 (2002), pp. 97-109.
-
(2002)
Rev. Acad. Canaria Cienc
, vol.14
, pp. 97-109
-
-
Saxena, R.K.1
Ram, J.2
Kalla, S.L.3
-
26
-
-
34547438072
-
Applications of the generalized H-function in bivariate distributions
-
R.K. Saxena, C. Ram, and S.L. Kalla, Applications of the generalized H-function in bivariate distributions, Rev. Acad. Canaria Cienc. 14 (2002), pp. 111-120.
-
(2002)
Rev. Acad. Canaria Cienc
, vol.14
, pp. 111-120
-
-
Saxena, R.K.1
Ram, C.2
Kalla, S.L.3
-
27
-
-
79251576218
-
A note on a generalzed M-series as a special function of fractional calculus
-
M. Sharma and R. Jain, A note on a generalzed M-series as a special function of fractional calculus, Fract. Calc. Appl. Anal. 12 (2009), pp. 449-452.
-
(2009)
Fract. Calc. Appl. Anal
, vol.12
, pp. 449-452
-
-
Sharma, M.1
Jain, R.2
-
28
-
-
23044520680
-
Some formulas for the Bernoulli and Euler polynomials at rational arguments
-
H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000), pp. 77-84.
-
(2000)
Math. Proc. Cambridge Philos. Soc
, vol.129
, pp. 77-84
-
-
Srivastava, H.M.1
-
30
-
-
79959353095
-
-
JohnWiley and Sons, NewYork, Chichester, Brisbane and Toronto
-
H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), JohnWiley and Sons, NewYork, Chichester, Brisbane and Toronto, 1985.
-
(1985)
Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester)
-
-
Srivastava, H.M.1
Karlsson, P.W.2
-
31
-
-
64449085065
-
Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel
-
H.M. Srivastava and Ž. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput. 211 (2009), pp. 198-210.
-
(2009)
Appl. Math. Comput
, vol.211
, pp. 198-210
-
-
Srivastava, H.M.1
Tomovski, Z.2
-
32
-
-
77953460296
-
A new generalization of the Bernoulli and related polynomials
-
H.M. Srivastava, M. Garg, and S. Choudhary, A new generalization of the Bernoulli and related polynomials, Russian J. Math. Phys. 17 (2010), pp. 251-261.
-
(2010)
Russian J. Math. Phys
, vol.17
, pp. 251-261
-
-
Srivastava, H.M.1
Garg, M.2
Choudhary, S.3
-
33
-
-
0003948654
-
-
South Asian Publishers, New Delhi and Madras
-
H.M. Srivastava, K.C. Gupta, and S.P. Goyal, The H-Functions of One and Two Variables with Applications, South Asian Publishers, New Delhi and Madras, 1982.
-
(1982)
The H-Functions of One and Two Variables With Applications
-
-
Srivastava, H.M.1
Gupta, K.C.2
Goyal, S.P.3
-
34
-
-
33845355798
-
Some fractional-calculus results for the H-function associated with a class of Feynman integrals
-
H.M. Srivastava, S.-D. Lin, and P.-Y. Wang, Some fractional-calculus results for the H-function associated with a class of Feynman integrals, Russian J. Math. Phys. 13 (2006), pp. 94-100.
-
(2006)
Russian J. Math. Phys
, vol.13
, pp. 94-100
-
-
Srivastava, H.M.1
Lin, S.-D.2
Wang, P.-Y.3
-
35
-
-
0003957510
-
-
4th ed., Cambridge University Press, Cambridge, London and NewYork
-
E.T. Whittaker and G.N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, 4th ed., Cambridge University Press, Cambridge, London and NewYork, 1927.
-
(1927)
A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With An Account Of The Principal Transcendental Functions
-
-
Whittaker, E.T.1
Watson, G.N.2
-
36
-
-
3042716395
-
An integral form for a generalized Zeta function
-
C-E. Yen, M.-L. Lin, and K. Nishimoto, An integral form for a generalized Zeta function, J. Fract. Calc. 22 (2002), pp. 99-102.
-
(2002)
J. Fract. Calc
, vol.22
, pp. 99-102
-
-
Yen, C.-E.1
Lin, M.-L.2
Nishimoto, K.3
|