메뉴 건너뛰기




Volumn 24, Issue 3, 2013, Pages 189-200

Bayesian nonstationary spatial modeling for very large datasets

Author keywords

Covariance tapering; Full scale approximation; Low rank models; Massive datasets; Model selection; Reversible jump MCMC

Indexed keywords

BAYESIAN ANALYSIS; DATA SET; GROUND-BASED MEASUREMENT; INSTRUMENTATION; NUMERICAL MODEL; SATELLITE SENSOR; SOIL ANALYSIS; SPATIAL ANALYSIS; WEATHER STATION;

EID: 84876470895     PISSN: 11804009     EISSN: 1099095X     Source Type: Journal    
DOI: 10.1002/env.2200     Document Type: Article
Times cited : (71)

References (59)
  • 3
    • 0034484835 scopus 로고    scopus 로고
    • Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling
    • Berliner LM, Wikle CK, Cressie N. 2000. Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling. Journal of Climate 13(22): 3953-3968.
    • (2000) Journal of Climate , vol.13 , Issue.22 , pp. 3953-3968
    • Berliner, L.M.1    Wikle, C.K.2    Cressie, N.3
  • 4
    • 84862889453 scopus 로고    scopus 로고
    • Estimating space and space-time covariance functions for large data sets: a weighted composite likelihood approach
    • Bevilacqua M, Gaetan C, Mateu J, Porcu E. 2012. Estimating space and space-time covariance functions for large data sets: a weighted composite likelihood approach. Journal of the American Statistical Association 107(497): 268-280.
    • (2012) Journal of the American Statistical Association , vol.107 , Issue.497 , pp. 268-280
    • Bevilacqua, M.1    Gaetan, C.2    Mateu, J.3    Porcu, E.4
  • 5
    • 34548023081 scopus 로고    scopus 로고
    • Dynamic factor process convolution models for multivariate space-time data with application to air quality assessment
    • Calder CA. 2007. Dynamic factor process convolution models for multivariate space-time data with application to air quality assessment. Environmental and Ecological Statistics 14(3): 229-247.
    • (2007) Environmental and Ecological Statistics , vol.14 , Issue.3 , pp. 229-247
    • Calder, C.A.1
  • 9
    • 77956698575 scopus 로고    scopus 로고
    • High-resolution digital soil mapping: kriging for very large datasets
    • chapter 4, Viscarra-Rossel R, McBratney A, Minasny B (eds). Springer: Dordrecht, NL
    • Cressie N, Kang EL. 2010. High-resolution digital soil mapping: kriging for very large datasets. In Proximal Soil Sensing, chapter 4, Viscarra-Rossel R, McBratney A, Minasny B (eds). Springer: Dordrecht, NL; 49-63.
    • (2010) Proximal Soil Sensing , pp. 49-63
    • Cressie, N.1    Kang, E.L.2
  • 12
    • 84901788514 scopus 로고    scopus 로고
    • Estimation and prediction in spatial models with block composite likelihoods using parallel computing
    • DOI: 10.1080/10618600.2012.76460, to appear in print
    • Eidsvik J, Shaby BA, Reich BJ, Wheeler M, Niemi J. 2012. Estimation and prediction in spatial models with block composite likelihoods using parallel computing. Journal of Computational and Graphical Statistics, DOI: 10.1080/10618600.2012.76460, (to appear in print).
    • (2012) Journal of Computational and Graphical Statistics
    • Eidsvik, J.1    Shaby, B.A.2    Reich, B.J.3    Wheeler, M.4    Niemi, J.5
  • 17
    • 0036858503 scopus 로고    scopus 로고
    • Compactly supported correlation functions
    • Gneiting T. 2002. Compactly supported correlation functions. Journal of Multivariate Analysis 83(2): 493-508.
    • (2002) Journal of Multivariate Analysis , vol.83 , Issue.2 , pp. 493-508
    • Gneiting, T.1
  • 19
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation Bayesian model determination
    • Green PJ. 1995. Reversible jump Markov chain Monte Carlo computation Bayesian model determination. Biometrika 82(4): 711.
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 711
    • Green, P.J.1
  • 20
    • 83555174652 scopus 로고    scopus 로고
    • Adaptive Gaussian predictive process models for large spatial datasets
    • Guhaniyogi R, Finley AO, Banerjee S, Gelfand AE. 2011. Adaptive Gaussian predictive process models for large spatial datasets. Environmetrics 22(8): 997-1007.
    • (2011) Environmetrics , vol.22 , Issue.8 , pp. 997-1007
    • Guhaniyogi, R.1    Finley, A.O.2    Banerjee, S.3    Gelfand, A.E.4
  • 21
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario H, Saksman E, Tamminen J. 2001. An adaptive Metropolis algorithm. Bernoulli 7(2): 223-242.
    • (2001) Bernoulli , vol.7 , Issue.2 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 22
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings W. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1): 97-109.
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.1
  • 23
    • 0001890697 scopus 로고
    • On deriving the inverse of a sum of matrices
    • Henderson H, Searle S. 1981. On deriving the inverse of a sum of matrices. SIAM Review 23(1): 53-60.
    • (1981) SIAM Review , vol.23 , Issue.1 , pp. 53-60
    • Henderson, H.1    Searle, S.2
  • 24
    • 0032422974 scopus 로고    scopus 로고
    • A process-convolution approach to modelling temperatures in the North Atlantic Ocean
    • Higdon D. 1998. A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environmental and Ecological Statistics 5(2): 173-190.
    • (1998) Environmental and Ecological Statistics , vol.5 , Issue.2 , pp. 173-190
    • Higdon, D.1
  • 26
    • 0033640675 scopus 로고    scopus 로고
    • Bayesian wavelet networks for nonparametric regression
    • Holmes C, Mallick BK. 2000. Bayesian wavelet networks for nonparametric regression. IEEE Transactions on Neural Networks 11(1): 27-35.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.1 , pp. 27-35
    • Holmes, C.1    Mallick, B.K.2
  • 28
    • 62849124345 scopus 로고    scopus 로고
    • Statistical analysis of small-area data based on independence, spatial, non-hierarchical, and hierarchical models
    • Kang EL, Liu D, Cressie N. 2009. Statistical analysis of small-area data based on independence, spatial, non-hierarchical, and hierarchical models. Computational Statistics & Data Analysis 53(8): 3016-3032.
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.8 , pp. 3016-3032
    • Kang, E.L.1    Liu, D.2    Cressie, N.3
  • 31
    • 84876499015 scopus 로고    scopus 로고
    • 2. PhD Dissertation, The Ohio State University, Columbus, OH
    • 2. PhD Dissertation, The Ohio State University, Columbus, OH.
    • (2011)
    • Katzfuss, M.1
  • 32
    • 79958198727 scopus 로고    scopus 로고
    • Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets
    • Katzfuss M, Cressie N. 2011. Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets. Journal of Time Series Analysis 32(4): 430-446.
    • (2011) Journal of Time Series Analysis , vol.32 , Issue.4 , pp. 430-446
    • Katzfuss, M.1    Cressie, N.2
  • 33
    • 84855971533 scopus 로고    scopus 로고
    • Bayesian hierarchical spatio-temporal smoothing for very large datasets
    • Katzfuss M, Cressie N. 2012. Bayesian hierarchical spatio-temporal smoothing for very large datasets. Environmetrics 23(1): 94-107.
    • (2012) Environmetrics , vol.23 , Issue.1 , pp. 94-107
    • Katzfuss, M.1    Cressie, N.2
  • 35
    • 84863700209 scopus 로고    scopus 로고
    • Informed source separation: A Bayesian tutorial
    • Sanjur B, Cetin E, Tekalp E, Kuruoglu E (eds). Antalya: Turkey
    • Knuth K. 2005. Informed source separation: A Bayesian tutorial. In European signal processing conference, Sanjur B, Cetin E, Tekalp E, Kuruoglu E (eds). Antalya: Turkey.
    • (2005) European signal processing conference
    • Knuth, K.1
  • 36
    • 70350302371 scopus 로고    scopus 로고
    • A spatio-temporal model for mean, anomaly, and trend fields of North Atlantic sea surface temperature
    • Lemos RT, Sansó B. 2009. A spatio-temporal model for mean, anomaly, and trend fields of North Atlantic sea surface temperature. Journal of the American Statistical Association 104(485): 5-18.
    • (2009) Journal of the American Statistical Association , vol.104 , Issue.485 , pp. 5-18
    • Lemos, R.T.1    Sansó, B.2
  • 37
    • 79961050814 scopus 로고    scopus 로고
    • An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach
    • Lindgren F, Rue H, Lindström J. 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society, Series B 73(4): 423-498.
    • (2011) Journal of the Royal Statistical Society, Series B , vol.73 , Issue.4 , pp. 423-498
    • Lindgren, F.1    Rue, H.2    Lindström, J.3
  • 38
    • 0001915899 scopus 로고
    • Composite likelihood methods
    • Prabhu NU (ed.). RI. American Mathematical Society: Providence
    • Lindsay B. 1988. Composite likelihood methods. In Statistical inference from stochastic processes, Prabhu NU (ed.). RI. American Mathematical Society: Providence; 221-239.
    • (1988) Statistical inference from stochastic processes , pp. 221-239
    • Lindsay, B.1
  • 42
    • 33745999511 scopus 로고    scopus 로고
    • Spatial modelling using a new class of nonstationary covariance functions
    • Paciorek C, Schervish M. 2006. Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17(5): 483-506.
    • (2006) Environmetrics , vol.17 , Issue.5 , pp. 483-506
    • Paciorek, C.1    Schervish, M.2
  • 43
    • 84876495143 scopus 로고    scopus 로고
    • New soil survey technologies to map landscape properties relevant to perennial plant performance
    • Ridley A, Feikama P, Bennet S, Rogers M-J, Wilkinson R, Hirth J (eds). Bendigo, Victoria: Austalia. Proceedings of the Salinity Solutions Conference
    • Pracilio G, Smettem K, Harper R. 2004. New soil survey technologies to map landscape properties relevant to perennial plant performance. In Salinity Solutions, Working with Science and Society, Ridley A, Feikama P, Bennet S, Rogers M-J, Wilkinson R, Hirth J (eds). Bendigo, Victoria: Austalia. Proceedings of the Salinity Solutions Conference.
    • (2004) Salinity Solutions, Working with Science and Society
    • Pracilio, G.1    Smettem, K.2    Harper, R.3
  • 45
    • 84870283784 scopus 로고    scopus 로고
    • Covariance approximation for large multivariate spatial datasets with an application to multiple climate model errors
    • Sang H, Jun M, Huang JZ. 2011. Covariance approximation for large multivariate spatial datasets with an application to multiple climate model errors. Annals of Applied Statistics 5(4): 2519-2548.
    • (2011) Annals of Applied Statistics , vol.5 , Issue.4 , pp. 2519-2548
    • Sang, H.1    Jun, M.2    Huang, J.Z.3
  • 47
    • 0000905617 scopus 로고
    • Adjustment of an inverse matrix corresponding to a change in one element of a given matrix
    • Sherman J, Morrison W. 1950. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Annals of Mathematical Statistics 21(1): 124-127.
    • (1950) Annals of Mathematical Statistics , vol.21 , Issue.1 , pp. 124-127
    • Sherman, J.1    Morrison, W.2
  • 48
    • 35349012069 scopus 로고    scopus 로고
    • Global statistical analysis of MISR aerosol data: a massive data product from NASA's Terra satellite
    • Shi T, Cressie N. 2007. Global statistical analysis of MISR aerosol data: a massive data product from NASA's Terra satellite. Environmetrics 18: 665-680.
    • (2007) Environmetrics , vol.18 , pp. 665-680
    • Shi, T.1    Cressie, N.2
  • 50
    • 84876495657 scopus 로고    scopus 로고
    • Nonstationary spatial covariance functions. Technical Report Technical Report No. 21, Center for Integrating Statistical and Environmental Science, The University of Chicago, Chicago, IL
    • Stein ML. 2005. Nonstationary spatial covariance functions. Technical Report Technical Report No. 21, Center for Integrating Statistical and Environmental Science, The University of Chicago, Chicago, IL.
    • (2005)
    • Stein, M.L.1
  • 51
    • 37849010186 scopus 로고    scopus 로고
    • A modeling approach for large spatial datasets
    • Stein ML. 2008. A modeling approach for large spatial datasets. Journal of the Korean Statistical Society 37(1): 3-10.
    • (2008) Journal of the Korean Statistical Society , vol.37 , Issue.1 , pp. 3-10
    • Stein, M.L.1
  • 52
    • 85009423852 scopus 로고    scopus 로고
    • Relationships between soil properties and high-resolution radiometrics, central eastern Wheatbelt, Western Australia
    • Taylor M, Smettem K, Pracilio G, Verboom W. 2002. Relationships between soil properties and high-resolution radiometrics, central eastern Wheatbelt, Western Australia. Exploration Geophysics 33(2): 95-102.
    • (2002) Exploration Geophysics , vol.33 , Issue.2 , pp. 95-102
    • Taylor, M.1    Smettem, K.2    Pracilio, G.3    Verboom, W.4
  • 54
    • 33846850076 scopus 로고    scopus 로고
    • Multivariate calibration of hyperspectral γ-ray energy spectra for proximal soil sensing
    • Viscarra Rossel R, Taylor HJ, McBratney A. 2007. Multivariate calibration of hyperspectral γ-ray energy spectra for proximal soil sensing. European Journal of Soil Science 58(1): 343-353.
    • (2007) European Journal of Soil Science , vol.58 , Issue.1 , pp. 343-353
    • Viscarra Rossel, R.1    Taylor, H.J.2    McBratney, A.3
  • 55
    • 79958225750 scopus 로고    scopus 로고
    • Low-rank representations for spatial processes
    • Gelfand AE, Fuentes M, Guttorp P, Diggle P (eds). Chapman and Hall/CRC: Boca Raton, FL
    • Wikle CK. 2010. Low-rank representations for spatial processes. In Handbook of Spatial Statistics, Gelfand AE, Fuentes M, Guttorp P, Diggle P (eds). Chapman and Hall/CRC: Boca Raton, FL; 107-118.
    • (2010) Handbook of Spatial Statistics , pp. 107-118
    • Wikle, C.K.1
  • 56
    • 0000414912 scopus 로고    scopus 로고
    • A dimension-reduced approach to space-time Kalman filtering
    • Wikle CK, Cressie N. 1999. A dimension-reduced approach to space-time Kalman filtering. Biometrika 86(4): 815-829.
    • (1999) Biometrika , vol.86 , Issue.4 , pp. 815-829
    • Wikle, C.K.1    Cressie, N.2
  • 58
    • 84876467526 scopus 로고
    • Inverting modified matrices. Technical Report Memorandum Report 42, Statistical Research Group, Princeton University, Princeton, NJ
    • Woodbury M. 1950. Inverting modified matrices. Technical Report Memorandum Report 42, Statistical Research Group, Princeton University, Princeton, NJ.
    • (1950)
    • Woodbury, M.1
  • 59
    • 29144508557 scopus 로고    scopus 로고
    • A kernel-based spatio-temporal dynamical model for nowcasting radar precipitation
    • Xu B, Wikle CK, Fox N. 2005. A kernel-based spatio-temporal dynamical model for nowcasting radar precipitation. Journal of the American Statistical Association 100(472): 1133-1144.
    • (2005) Journal of the American Statistical Association , vol.100 , Issue.472 , pp. 1133-1144
    • Xu, B.1    Wikle, C.K.2    Fox, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.