메뉴 건너뛰기




Volumn 23, Issue 1, 2012, Pages 94-107

Bayesian hierarchical spatio-temporal smoothing for very large datasets

Author keywords

Bayesian hierarchical modelling; Dimension reduction; Global CO 2; Massive datasets; Remote sensing; Varying model dimension

Indexed keywords

ALGORITHM; BAYESIAN ANALYSIS; CARBON DIOXIDE; COVARIANCE ANALYSIS; DATA SET; EMPIRICAL ANALYSIS; HIERARCHICAL SYSTEM; MARKOV CHAIN; MONTE CARLO ANALYSIS; REMOTE SENSING; SPATIOTEMPORAL ANALYSIS;

EID: 84855971533     PISSN: 11804009     EISSN: 1099095X     Source Type: Journal    
DOI: 10.1002/env.1147     Document Type: Article
Times cited : (102)

References (55)
  • 2
  • 5
    • 17444376543 scopus 로고    scopus 로고
    • Exploring space-time structure in ozone concentration using a dynamic process convolution model
    • C Gatsonis, R Kass, A Carriquiry, A Gelman, D Higdon, D Pauler, I Verdinelli (eds). Springer: New York, NY
    • Calder CA, Holloman C, Higdon D. 2002. Exploring space-time structure in ozone concentration using a dynamic process convolution model. In Case Studies in Bayesian Statistics, Vol. VI, C Gatsonis, R Kass, A Carriquiry, A Gelman, D Higdon, D Pauler, I Verdinelli (eds). Springer: New York, NY; 165-176.
    • (2002) Case Studies in Bayesian Statistics , vol.6 , pp. 165-176
    • Calder, C.A.1    Holloman, C.2    Higdon, D.3
  • 6
    • 70349234435 scopus 로고    scopus 로고
    • Models for bounded systems with continuous dynamics
    • Cangelosi A, Hooten MB. 2009. Models for bounded systems with continuous dynamics. Biometrics 65(3): 850-856.
    • (2009) Biometrics , vol.65 , Issue.3 , pp. 850-856
    • Cangelosi, A.1    Hooten, M.B.2
  • 7
    • 0000193853 scopus 로고
    • On Gibbs sampling for state space models
    • Carter C, Kohn R. 1994. On Gibbs sampling for state space models. Biometrika 81(3): 541-553.
    • (1994) Biometrika , vol.81 , Issue.3 , pp. 541-553
    • Carter, C.1    Kohn, R.2
  • 9
    • 0003548569 scopus 로고
    • revised edn.) John Wiley & Sons: New York, NY.
    • Cressie N. 1993. Statistics for Spatial Data, (revised edn.) John Wiley & Sons: New York, NY.
    • (1993) Statistics for Spatial Data
    • Cressie, N.1
  • 16
    • 67349265140 scopus 로고    scopus 로고
    • The EM algorithm in a distributed computing environment for modelling environmental space-time data
    • Fassò A, Cameletti M. 2009. The EM algorithm in a distributed computing environment for modelling environmental space-time data. Environmental Modelling & Software 24(9): 1027-1035.
    • (2009) Environmental Modelling & Software , vol.24 , Issue.9 , pp. 1027-1035
    • Fassò, A.1    Cameletti, M.2
  • 17
    • 0000761371 scopus 로고
    • Applied state space modelling of non-Gaussian time series using integration-based Kalman filtering
    • Frühwirth-Schnatter S. 1994. Applied state space modelling of non-Gaussian time series using integration-based Kalman filtering. Statistics and Computing 4(4): 259-269.
    • (1994) Statistics and Computing , vol.4 , Issue.4 , pp. 259-269
    • Frühwirth-Schnatter, S.1
  • 18
    • 0034913394 scopus 로고    scopus 로고
    • Estimation of motion from sequences of images: daily variability of total ozone mapping spectrometer ozone data
    • Gelpke V, Künsch HR. 2001. Estimation of motion from sequences of images: daily variability of total ozone mapping spectrometer ozone data. Journal of Geophysical Research 106(D11): 11825-11834.
    • (2001) Journal of Geophysical Research , vol.106 , Issue.D11 , pp. 11825-11834
    • Gelpke, V.1    Künsch, H.R.2
  • 20
    • 36148996468 scopus 로고    scopus 로고
    • Bayesian stochastic search for VAR model restrictions
    • George EI, Sun D, Ni S. 2008. Bayesian stochastic search for VAR model restrictions. Journal of Econometrics 1421): 553-580.
    • (2008) Journal of Econometrics , vol.142 , Issue.1 , pp. 553-580
    • George, E.I.1    Sun, D.2    Ni, S.3
  • 22
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive metropolis algorithm
    • Haario H, Saksman E, Tamminen J. 2001. An adaptive metropolis algorithm. Bernoulli 7(2): 223-242.
    • (2001) Bernoulli , vol.7 , Issue.2 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 23
    • 0003410290 scopus 로고
    • Princeton University Press: Princeton, NJ.
    • Hamilton J. 1994. Time Series Analysis. Princeton University Press: Princeton, NJ.
    • (1994) Time Series Analysis
    • Hamilton, J.1
  • 24
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings W. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1): 97-109.
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.1
  • 25
    • 0032422974 scopus 로고    scopus 로고
    • A process-convolution approach to modelling temperatures in the North Atlantic Ocean
    • Higdon D. 1998. A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environmental and Ecological Statistics 5(2): 173-190.
    • (1998) Environmental and Ecological Statistics , vol.5 , Issue.2 , pp. 173-190
    • Higdon, D.1
  • 26
    • 2942619617 scopus 로고    scopus 로고
    • Space and space-time modeling using process convolutions
    • C Anderson, V Barnett, P Chatwin, A El-Shaarawi (eds). Springer: London
    • Higdon D. 2002. Space and space-time modeling using process convolutions. In Quantitative Methods for Current Environmental Issues, C Anderson, V Barnett, P Chatwin, A El-Shaarawi (eds). Springer: London; 37-56.
    • (2002) Quantitative Methods for Current Environmental Issues , pp. 37-56
    • Higdon, D.1
  • 28
    • 78751616255 scopus 로고    scopus 로고
    • Nonstationary covariance models for global data
    • Jun M, Stein ML. 2008. Nonstationary covariance models for global data. Annals of Applied Statistics 2(4): 1271-1289.
    • (2008) Annals of Applied Statistics , vol.2 , Issue.4 , pp. 1271-1289
    • Jun, M.1    Stein, M.L.2
  • 29
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman R. 1960. A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82(1): 35-45.
    • (1960) Journal of Basic Engineering , vol.82 , Issue.1 , pp. 35-45
    • Kalman, R.1
  • 31
    • 77955119363 scopus 로고    scopus 로고
    • Using temporal variability to improve spatial mapping with application to satellite data
    • Kang EL, Cressie N, Shi T. 2010. Using temporal variability to improve spatial mapping with application to satellite data. Canadian Journal of Statistics 38(2): 271-289.
    • (2010) Canadian Journal of Statistics , vol.38 , Issue.2 , pp. 271-289
    • Kang, E.L.1    Cressie, N.2    Shi, T.3
  • 32
    • 62849124345 scopus 로고    scopus 로고
    • Statistical analysis of small-area data based on independence, spatial, non-hierarchical, and hierarchical models
    • Kang EL, Liu D, Cressie N. 2009. Statistical analysis of small-area data based on independence, spatial, non-hierarchical, and hierarchical models. Computational Statistics & Data Analysis 53(8): 3016-3032.
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.8 , pp. 3016-3032
    • Kang, E.L.1    Liu, D.2    Cressie, N.3
  • 34
    • 84855950364 scopus 로고    scopus 로고
    • 2, PhD Dissertation, TheOhio State University.
    • 2, PhD Dissertation, TheOhio State University.
    • (2011)
    • Katzfuss, M.1
  • 35
    • 79958198727 scopus 로고    scopus 로고
    • Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets
    • Katzfuss M, Cressie N. 2011. Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets. Journal of Time Series Analysis 32(4): 430-446.
    • (2011) Journal of Time Series Analysis , vol.32 , Issue.4 , pp. 430-446
    • Katzfuss, M.1    Cressie, N.2
  • 36
    • 0030426365 scopus 로고    scopus 로고
    • Dispersal data and the spread of invading organisms
    • Kot M, Lewis M, van Den Driessche P. 1996. Dispersal data and the spread of invading organisms. Ecology 77: 2027-2042.
    • (1996) Ecology , vol.77 , pp. 2027-2042
    • Kot, M.1    Lewis, M.2    van Den Driessche, P.3
  • 37
    • 84952504842 scopus 로고
    • Forecasting with Bayesian vector autoregressions: ffve years of experience
    • Litterman R. 1986. Forecasting with Bayesian vector autoregressions: ffve years of experience. Journal of Business & Economic Statistics 4(1): 25-38.
    • (1986) Journal of Business & Economic Statistics , vol.4 , Issue.1 , pp. 25-38
    • Litterman, R.1
  • 41
    • 84993734384 scopus 로고    scopus 로고
    • Multiresolution models for nonstationary spatial covariance functions
    • Nychka DW, Wikle CK, Royle JA. 2002. Multiresolution models for nonstationary spatial covariance functions. Statistical Modelling 2(4): 315-331.
    • (2002) Statistical Modelling , vol.2 , Issue.4 , pp. 315-331
    • Nychka, D.W.1    Wikle, C.K.2    Royle, J.A.3
  • 42
    • 84855940505 scopus 로고    scopus 로고
    • DGGRID Software. Version 4.3b.
    • Sahr K. 2003. DGGRID Software. Version 4.3b.
    • (2003)
    • Sahr, K.1
  • 44
    • 0030485372 scopus 로고    scopus 로고
    • Reconstruction of historical sea surface temperatures using empirical orthogonal functions
    • Smith T, Reynolds R, Livezey R, Stokes D. 1996. Reconstruction of historical sea surface temperatures using empirical orthogonal functions. Journal of Climate 9(6): 1403-1420.
    • (1996) Journal of Climate , vol.9 , Issue.6 , pp. 1403-1420
    • Smith, T.1    Reynolds, R.2    Livezey, R.3    Stokes, D.4
  • 48
    • 0041985115 scopus 로고    scopus 로고
    • Hierarchical Bayesian models for predicting the spread of ecological processes
    • Wikle CK. 2003. Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 84(6): 1382-1394.
    • (2003) Ecology , vol.84 , Issue.6 , pp. 1382-1394
    • Wikle, C.K.1
  • 49
    • 79958225750 scopus 로고    scopus 로고
    • Low-rank representations for spatial processes
    • AE Gelfand, M Fuentes, P Guttorp, P Diggle (eds). Chapman and Hall/CRC: Boca Raton, FL
    • Wikle CK. 2010. Low-rank representations for spatial processes. In Handbook of Spatial Statistics, AE Gelfand, M Fuentes, P Guttorp, P Diggle (eds). Chapman and Hall/CRC: Boca Raton, FL; 107-118.
    • (2010) Handbook of Spatial Statistics , pp. 107-118
    • Wikle, C.K.1
  • 51
    • 0000414912 scopus 로고    scopus 로고
    • A dimension-reduced approach to space-time Kalman filtering
    • Wikle CK, Cressie N. 1999. A dimension-reduced approach to space-time Kalman filtering. Biometrika 86(4): 815-829.
    • (1999) Biometrika , vol.86 , Issue.4 , pp. 815-829
    • Wikle, C.K.1    Cressie, N.2
  • 52
    • 78449244115 scopus 로고    scopus 로고
    • A general science-based framework for dynamical spatio-temporal models
    • Wikle CK, Hooten MB. 2010. A general science-based framework for dynamical spatio-temporal models. Test 19(3): 417-451.
    • (2010) Test , vol.19 , Issue.3 , pp. 417-451
    • Wikle, C.K.1    Hooten, M.B.2
  • 54
    • 29144508557 scopus 로고    scopus 로고
    • A kernel-based spatio-temporal dynamical model for nowcasting radar precipitation
    • Xu B, Wikle CK, Fox N. 2005. A kernel-based spatio-temporal dynamical model for nowcasting radar precipitation. Journal of the American Statistical Association 100(472): 1133-1144.
    • (2005) Journal of the American Statistical Association , vol.100 , Issue.472 , pp. 1133-1144
    • Xu, B.1    Wikle, C.K.2    Fox, N.3
  • 55
    • 33749362015 scopus 로고    scopus 로고
    • Estimation of parameterized spatio-temporal dynamic models
    • Xu K, Wikle CK. 2007. Estimation of parameterized spatio-temporal dynamic models. Journal of Statistical Planning and Inference 137(2): 567-588.
    • (2007) Journal of Statistical Planning and Inference , vol.137 , Issue.2 , pp. 567-588
    • Xu, K.1    Wikle, C.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.