-
1
-
-
1842778990
-
Production of electricity during wastewater treatment using a single chamber microbial fuel cell
-
Liu H., Ramnarayanan R., Logan B.E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 2004, 38:2281-2285.
-
(2004)
Environ. Sci. Technol.
, vol.38
, pp. 2281-2285
-
-
Liu, H.1
Ramnarayanan, R.2
Logan, B.E.3
-
2
-
-
25144508500
-
Simultaneous wastewater treatment and biological electricity generation
-
Logan B.E. Simultaneous wastewater treatment and biological electricity generation. Water Sci. Technol. 2005, 52:31-37.
-
(2005)
Water Sci. Technol.
, vol.52
, pp. 31-37
-
-
Logan, B.E.1
-
3
-
-
60349120436
-
Factors affecting the performance of microbial fuel cells for sulfur pollutants removal
-
Zhao F., Rahunen N., Varcoe J.R., Roberts A.J., Avignone-Rossa C., Thumser A.E., Slade R.C.T. Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. Biosens. Bioelectron. 2009, 24:1931-1936.
-
(2009)
Biosens. Bioelectron.
, vol.24
, pp. 1931-1936
-
-
Zhao, F.1
Rahunen, N.2
Varcoe, J.R.3
Roberts, A.J.4
Avignone-Rossa, C.5
Thumser, A.E.6
Slade, R.C.T.7
-
4
-
-
33748566549
-
Microbial fuel cells: methodology and technology
-
Logan B.E., Hamelers B., Rozendal R., Schroder U., Keller J., Freguia S., Aelterman P., Verstraete W., Rabaey K. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 2006, 40:5181-5192.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 5181-5192
-
-
Logan, B.E.1
Hamelers, B.2
Rozendal, R.3
Schroder, U.4
Keller, J.5
Freguia, S.6
Aelterman, P.7
Verstraete, W.8
Rabaey, K.9
-
5
-
-
33847607418
-
Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells
-
Cheng S., Logan B.E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun. 2007, 9:492-496.
-
(2007)
Electrochem. Commun.
, vol.9
, pp. 492-496
-
-
Cheng, S.1
Logan, B.E.2
-
6
-
-
17744405443
-
A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude
-
Schröder U., Nießen J., Scholz F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. 2003, 42:2880-2883.
-
(2003)
Angew. Chem. Int. Ed.
, vol.42
, pp. 2880-2883
-
-
Schröder, U.1
Nießen, J.2
Scholz, F.3
-
7
-
-
4644305766
-
Biofuel cells select for microbial consortia that self-mediate electron transfer
-
Rabaey K., Boon N., Siciliano S.D., Verhaege M., Verstraete W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 2004, 70:5373-5382.
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, pp. 5373-5382
-
-
Rabaey, K.1
Boon, N.2
Siciliano, S.D.3
Verhaege, M.4
Verstraete, W.5
-
8
-
-
4544262280
-
Cathode performance as a factor in electricity generation in microbial fuel cells
-
Oh S.E., Min B., Logan B.E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 2004, 38:4900-4904.
-
(2004)
Environ. Sci. Technol.
, vol.38
, pp. 4900-4904
-
-
Oh, S.E.1
Min, B.2
Logan, B.E.3
-
9
-
-
76049116695
-
Enhanced performance of air-cathode two-chamber microbial fuel cells with high pH-anode and low-pH cathode
-
Zhuang L., Zhou S., Li Y., Yuan Y. Enhanced performance of air-cathode two-chamber microbial fuel cells with high pH-anode and low-pH cathode. Bioresour. Technol. 2010, 101:3514-3519.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 3514-3519
-
-
Zhuang, L.1
Zhou, S.2
Li, Y.3
Yuan, Y.4
-
10
-
-
30344467807
-
Power densities using different cathode catalysts (Pt and CoTMMP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells
-
Cheng S., Liu H., Logan B.E. Power densities using different cathode catalysts (Pt and CoTMMP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol. 2006, 40:364-369.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 364-369
-
-
Cheng, S.1
Liu, H.2
Logan, B.E.3
-
11
-
-
27844504697
-
Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells
-
Zhao F., Harnisch F., Schröder U., Scholz F., Bogdanoff P., Herrmann I. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Commun. 2005, 7:1405-1410.
-
(2005)
Electrochem. Commun.
, vol.7
, pp. 1405-1410
-
-
Zhao, F.1
Harnisch, F.2
Schröder, U.3
Scholz, F.4
Bogdanoff, P.5
Herrmann, I.6
-
12
-
-
34548434623
-
Microbial fuel cell performance with non-Pt cathode catalysts
-
Yu H., Cheng S., Scott K., Logan B.E. Microbial fuel cell performance with non-Pt cathode catalysts. J. Power Sources 2007, 171:275-281.
-
(2007)
J. Power Sources
, vol.171
, pp. 275-281
-
-
Yu, H.1
Cheng, S.2
Scott, K.3
Logan, B.E.4
-
13
-
-
64449088423
-
Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells
-
Zhang L., Liu C., Zhuang L., Li W., Zhou S., Zhang J. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosens. Bioelectron. 2009, 24:2825-2829.
-
(2009)
Biosens. Bioelectron.
, vol.24
, pp. 2825-2829
-
-
Zhang, L.1
Liu, C.2
Zhuang, L.3
Li, W.4
Zhou, S.5
Zhang, J.6
-
14
-
-
70350568781
-
Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell
-
Zhang F., Cheng S., Pant D., Bogaert G.V., Logan B.E. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem. Commun. 2009, 11:2177-2179.
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 2177-2179
-
-
Zhang, F.1
Cheng, S.2
Pant, D.3
Bogaert, G.V.4
Logan, B.E.5
-
15
-
-
79952388774
-
Neutral hydrophilic cathode catalyst binders for microbial fuel cells
-
Saito T., Roberts T.H., Long T.E., Logan B.E., Hickner M.A. Neutral hydrophilic cathode catalyst binders for microbial fuel cells. Energy Environ. Sci. 2011, 4:928-934.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 928-934
-
-
Saito, T.1
Roberts, T.H.2
Long, T.E.3
Logan, B.E.4
Hickner, M.A.5
-
16
-
-
84862663005
-
Application of anion exchange ionomer for oxygen reduction catalysts in microbial fuel cells
-
Yu E.H., Burkitt R., Wang X., Scott K. Application of anion exchange ionomer for oxygen reduction catalysts in microbial fuel cells. Electrochem. Commun. 2012, 21:30-35.
-
(2012)
Electrochem. Commun.
, vol.21
, pp. 30-35
-
-
Yu, E.H.1
Burkitt, R.2
Wang, X.3
Scott, K.4
-
17
-
-
55349136222
-
Quantification of the internal resistance distribution of microbial fuel cells
-
Fan Y., Sharbrough E., Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol. 2008, 42:8101-8107.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 8101-8107
-
-
Fan, Y.1
Sharbrough, E.2
Liu, H.3
-
18
-
-
77149141457
-
Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors
-
Zhang F., Saito T., Cheng S., Hickner M.A., Logan B.E. Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environ. Sci. Technol. 2010, 44:1490-1495.
-
(2010)
Environ. Sci. Technol.
, vol.44
, pp. 1490-1495
-
-
Zhang, F.1
Saito, T.2
Cheng, S.3
Hickner, M.A.4
Logan, B.E.5
-
19
-
-
22344440310
-
Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration
-
Liu H., Cheng S., Logan B.E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 2005, 39:5488-5493.
-
(2005)
Environ. Sci. Technol.
, vol.39
, pp. 5488-5493
-
-
Liu, H.1
Cheng, S.2
Logan, B.E.3
-
20
-
-
0029721353
-
Effect of cobalt addition to nickel hydroxide as a positive material for rechargeable alkaline batteries
-
Watanabe K., Koseki M., Kumagai N. Effect of cobalt addition to nickel hydroxide as a positive material for rechargeable alkaline batteries. J. Power Sources 1996, 58:23-28.
-
(1996)
J. Power Sources
, vol.58
, pp. 23-28
-
-
Watanabe, K.1
Koseki, M.2
Kumagai, N.3
-
21
-
-
80755163594
-
The effect of water proofing on the performance of nickel foam cathode in microbial fuel cells
-
Liu J., Feng Y., Wang Y., Yang Q., Shi X., Qu Y., Ren N. The effect of water proofing on the performance of nickel foam cathode in microbial fuel cells. J. Power Sources 2012, 198:100-104.
-
(2012)
J. Power Sources
, vol.198
, pp. 100-104
-
-
Liu, J.1
Feng, Y.2
Wang, Y.3
Yang, Q.4
Shi, X.5
Qu, Y.6
Ren, N.7
-
22
-
-
81855179125
-
-
Available, (Accessed June 23, 2011)
-
Middaugh J., Cheng S., Liu W., Wagner R. How to Make Cathodes with a Diffusion Layer for Single-Chamber Microbial Fuel Cells Available, (Accessed June 23, 2011). http://www.engr.psu.edu/ce/enve/logan/bioenergy/pdf/Cathode_093008.pdf.
-
How to Make Cathodes with a Diffusion Layer for Single-Chamber Microbial Fuel Cells
-
-
Middaugh, J.1
Cheng, S.2
Liu, W.3
Wagner, R.4
-
23
-
-
33344465903
-
Increased performance of single-chamber microbial fuel cells using an improved cathode structure
-
Cheng S., Liu H., Logan B.E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Commun. 2006, 8:489-494.
-
(2006)
Electrochem. Commun.
, vol.8
, pp. 489-494
-
-
Cheng, S.1
Liu, H.2
Logan, B.E.3
-
24
-
-
34248181574
-
Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells
-
Logan B.E., Cheng S., Watson V., Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 2007, 41:3341-3346.
-
(2007)
Environ. Sci. Technol.
, vol.41
, pp. 3341-3346
-
-
Logan, B.E.1
Cheng, S.2
Watson, V.3
Estadt, G.4
-
25
-
-
0024191542
-
Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese
-
Lovley D.R., Phillips E.J.P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 1988, 54:1472-1480.
-
(1988)
Appl. Environ. Microbiol.
, vol.54
, pp. 1472-1480
-
-
Lovley, D.R.1
Phillips, E.J.P.2
-
26
-
-
79551684612
-
Increasing power generation for scaling up single-chamber air cathode microbial fuel cells
-
Cheng S., Logan B.E. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour. Technol. 2011, 102:4468-4473.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 4468-4473
-
-
Cheng, S.1
Logan, B.E.2
-
27
-
-
0039758374
-
The characterization of activated carbons with oxygen and nitrogen surface groups
-
Biniak S., Szymański G., Siedlewski J., Świa̧tkowski A. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 1997, 35:1799-1810.
-
(1997)
Carbon
, vol.35
, pp. 1799-1810
-
-
Biniak, S.1
Szymański, G.2
Siedlewski, J.3
Świa̧tkowski, A.4
-
28
-
-
0000767644
-
Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content
-
Moreno-Castilla C., Carrasco-Marín F., Maldonado-Hódar F.J., Rivera-Utrulla J. Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content. Carbon 1998, 36:145-151.
-
(1998)
Carbon
, vol.36
, pp. 145-151
-
-
Moreno-Castilla, C.1
Carrasco-Marín, F.2
Maldonado-Hódar, F.J.3
Rivera-Utrulla, J.4
|