메뉴 건너뛰기




Volumn 76, Issue , 2013, Pages 345-361

Variational Bayesian mixed-effects inference for classification studies

Author keywords

Balanced accuracy; Bayesian inference; Fixed effects; Group studies; Normal binomial; Random effects; Variational Bayes

Indexed keywords

ALGORITHM; ANALYTICAL PARAMETERS; ARTICLE; BAYES THEOREM; CLASSIFICATION; CLASSIFIER; ELECTROENCEPHALOGRAM; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HUMAN; IMAGE ANALYSIS; MONTE CARLO METHOD; MULTIVARIATE ANALYSIS; NEUROIMAGING; PRIORITY JOURNAL; STATISTICAL ANALYSIS;

EID: 84876306005     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2013.03.008     Document Type: Article
Times cited : (28)

References (68)
  • 2
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • Attias H. A variational Bayesian framework for graphical models. Adv. Neural Inf. Process. Syst. 2000, 12:209-215.
    • (2000) Adv. Neural Inf. Process. Syst. , vol.12 , pp. 209-215
    • Attias, H.1
  • 3
    • 0142042792 scopus 로고    scopus 로고
    • General multilevel linear modeling for group analysis in fMRI
    • Beckmann C.F., Jenkinson M., Smith S.M. General multilevel linear modeling for group analysis in fMRI. Neuroimage 2003, 20:1052-1063.
    • (2003) Neuroimage , vol.20 , pp. 1052-1063
    • Beckmann, C.F.1    Jenkinson, M.2    Smith, S.M.3
  • 7
    • 79955024787 scopus 로고    scopus 로고
    • Single-trial analysis and classification of ERP components-a tutorial
    • Blankertz B., Lemm S., Treder M., Haufe S., Müller K.-R. Single-trial analysis and classification of ERP components-a tutorial. Neuroimage 2011, 15:814-825.
    • (2011) Neuroimage , vol.15 , pp. 814-825
    • Blankertz, B.1    Lemm, S.2    Treder, M.3    Haufe, S.4    Müller, K.-R.5
  • 14
    • 77949480559 scopus 로고    scopus 로고
    • Decoding individual episodic memory traces in the human hippocampus
    • Chadwick M.J., Hassabis D., Weiskopf N., Maguire E.A. Decoding individual episodic memory traces in the human hippocampus. Curr. Biol. 2010, 20:544-547.
    • (2010) Curr. Biol. , vol.20 , pp. 544-547
    • Chadwick, M.J.1    Hassabis, D.2    Weiskopf, N.3    Maguire, E.A.4
  • 17
    • 79955046008 scopus 로고    scopus 로고
    • Within- and cross-participant classifiers reveal different neural coding of information
    • Clithero J.A., Smith D.V., Carter R.M., Huettel S.A. Within- and cross-participant classifiers reveal different neural coding of information. Neuroimage 2011, 56:699-708.
    • (2011) Neuroimage , vol.56 , pp. 699-708
    • Clithero, J.A.1    Smith, D.V.2    Carter, R.M.3    Huettel, S.A.4
  • 18
    • 0041737619 scopus 로고    scopus 로고
    • Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex
    • Cox D.D., Savoy R.L. Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 2003, 19:261-270.
    • (2003) Neuroimage , vol.19 , pp. 261-270
    • Cox, D.D.1    Savoy, R.L.2
  • 19
    • 44649136049 scopus 로고    scopus 로고
    • Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
    • Davatzikos C., Resnick S.M., Wu X., Parmpi P., Clark C.M. Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage 2008, 41:1220-1227.
    • (2008) Neuroimage , vol.41 , pp. 1220-1227
    • Davatzikos, C.1    Resnick, S.M.2    Wu, X.3    Parmpi, P.4    Clark, C.M.5
  • 20
    • 55649105252 scopus 로고    scopus 로고
    • Models of accuracy in repeated-measures designs
    • Dixon P. Models of accuracy in repeated-measures designs. J. Mem. Lang. 2008, 59:447-456.
    • (2008) J. Mem. Lang. , vol.59 , pp. 447-456
    • Dixon, P.1
  • 21
    • 0001398623 scopus 로고
    • Limiting the risk of Bayes and empirical Bayes estimators-part I: the Bayes case
    • Efron B., Morris C. Limiting the risk of Bayes and empirical Bayes estimators-part I: the Bayes case. J. Am. Stat. Assoc. 1971, 807-815.
    • (1971) J. Am. Stat. Assoc. , pp. 807-815
    • Efron, B.1    Morris, C.2
  • 22
    • 84864561384 scopus 로고    scopus 로고
    • A tutorial on variational Bayesian inference
    • Fox C.W., Roberts S.J. A tutorial on variational Bayesian inference. Artif. Intell. Rev. 2012, 38:85-95.
    • (2012) Artif. Intell. Rev. , vol.38 , pp. 85-95
    • Fox, C.W.1    Roberts, S.J.2
  • 23
    • 0042671121 scopus 로고    scopus 로고
    • Posterior probability maps and {SPMs}
    • Friston K.J., Penny W. Posterior probability maps and {SPMs}. Neuroimage 2003, 19:1240-1249.
    • (2003) Neuroimage , vol.19 , pp. 1240-1249
    • Friston, K.J.1    Penny, W.2
  • 29
    • 0001740245 scopus 로고
    • Regression towards mediocrity in hereditary stature
    • Galton F. Regression towards mediocrity in hereditary stature. J. Anthropol. Inst. Great Brit. Ireland 1886, 15:246-263.
    • (1886) J. Anthropol. Inst. Great Brit. Ireland , vol.15 , pp. 246-263
    • Galton, F.1
  • 31
  • 35
    • 63949084085 scopus 로고    scopus 로고
    • Decoding reveals the contents of visual working memory in early visual areas
    • Harrison S.A., Tong F. Decoding reveals the contents of visual working memory in early visual areas. Nature 2009, 458:632-635.
    • (2009) Nature , vol.458 , pp. 632-635
    • Harrison, S.A.1    Tong, F.2
  • 37
    • 33745587777 scopus 로고    scopus 로고
    • Decoding mental states from brain activity in humans
    • Haynes J.-D., Rees G. Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 2006, 7:523-534.
    • (2006) Nat. Rev. Neurosci. , vol.7 , pp. 523-534
    • Haynes, J.-D.1    Rees, G.2
  • 38
    • 21944448369 scopus 로고    scopus 로고
    • Generalisability, random effects and population inference. Fourth Int Conf on Functional Mapping of the Human Brain
    • Holmes A.P., Friston K.J. Generalisability, random effects and population inference. Fourth Int Conf on Functional Mapping of the Human Brain. Neuroimage 1998, 7:S754.
    • (1998) Neuroimage , vol.7
    • Holmes, A.P.1    Friston, K.J.2
  • 39
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: a systematic study
    • Japkowicz N., Stephen S. The class imbalance problem: a systematic study. Intell. Data Anal. 2002, 6:429-449.
    • (2002) Intell. Data Anal. , vol.6 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 40
    • 69949092091 scopus 로고    scopus 로고
    • Recollection, familiarity, and cortical reinstatement: a multivoxel pattern analysis
    • Johnson J.D., McDuff S.G.R., Rugg M.D., Norman K.A. Recollection, familiarity, and cortical reinstatement: a multivoxel pattern analysis. Neuron 2009, 63:697-708.
    • (2009) Neuron , vol.63 , pp. 697-708
    • Johnson, J.D.1    McDuff, S.G.R.2    Rugg, M.D.3    Norman, K.A.4
  • 41
    • 77649256873 scopus 로고    scopus 로고
    • A neurosemantic theory of concrete noun representation based on the underlying brain codes
    • Just M.A., Cherkassky V.L., Aryal S., Mitchell T.M. A neurosemantic theory of concrete noun representation based on the underlying brain codes. PLoS One 2010, 5:e8622.
    • (2010) PLoS One , vol.5
    • Just, M.A.1    Cherkassky, V.L.2    Aryal, S.3    Mitchell, T.M.4
  • 44
    • 67649239046 scopus 로고    scopus 로고
    • Recruitment of an area involved in eye movements during mental arithmetic
    • Knops A., Thirion B., Hubbard E.M., Michel V., Dehaene S. Recruitment of an area involved in eye movements during mental arithmetic. Science 2009, 324:1583-1585.
    • (2009) Science , vol.324 , pp. 1583-1585
    • Knops, A.1    Thirion, B.2    Hubbard, E.M.3    Michel, V.4    Dehaene, S.5
  • 45
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Lawrence Erlbaum Associates Ltd.
    • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. International Joint Conference on Artificial Intelligence 1995, 1137-1145. Lawrence Erlbaum Associates Ltd.
    • (1995) International Joint Conference on Artificial Intelligence , pp. 1137-1145
    • Kohavi, R.1
  • 46
    • 70350503902 scopus 로고    scopus 로고
    • Using neural measures of economic value to solve the public goods free-rider problem
    • Krajbich I., Camerer C., Ledyard J., Rangel A. Using neural measures of economic value to solve the public goods free-rider problem. Science 2009, 326:596-599.
    • (2009) Science , vol.326 , pp. 596-599
    • Krajbich, I.1    Camerer, C.2    Ledyard, J.3    Rangel, A.4
  • 48
    • 21844462365 scopus 로고    scopus 로고
    • Tutorial on practical prediction theory for classification
    • Langford J. Tutorial on practical prediction theory for classification. J. Mach. Learn. Res. 2005, 6:273-306.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 273-306
    • Langford, J.1
  • 49
  • 50
    • 0000790543 scopus 로고
    • Bayesian methods for binomial data
    • Leonard T. Bayesian methods for binomial data. Biometrika 1972, 59:581-589.
    • (1972) Biometrika , vol.59 , pp. 581-589
    • Leonard, T.1
  • 51
    • 0003425255 scopus 로고
    • Ensemble learning and evidence maximization
    • (Available at:[Accessed January 4, 2013])
    • MacKay D.J.C. Ensemble learning and evidence maximization. Proc. NIPS 1995, (Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.4083&rep=rep1&type=pdf [Accessed January 4, 2013]).
    • (1995) Proc. NIPS
    • MacKay, D.J.C.1
  • 52
    • 71849092693 scopus 로고    scopus 로고
    • Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes
    • Marquand A., Howard M., Brammer M., Chu C., Coen S., Mourão-Miranda J. Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. Neuroimage 2010, 49:2178-2189.
    • (2010) Neuroimage , vol.49 , pp. 2178-2189
    • Marquand, A.1    Howard, M.2    Brammer, M.3    Chu, C.4    Coen, S.5    Mourão-Miranda, J.6
  • 53
    • 67651023727 scopus 로고    scopus 로고
    • Simple group fMRI modeling and inference
    • Mumford J.A., Nichols T. Simple group fMRI modeling and inference. Neuroimage 2009, 47:1469-1475.
    • (2009) Neuroimage , vol.47 , pp. 1469-1475
    • Mumford, J.A.1    Nichols, T.2
  • 54
    • 0043093796 scopus 로고    scopus 로고
    • Novel nonparametric approach to canonical correlation analysis with applications to low CNR functional MRI data
    • Nandy R.R., Cordes D. Novel nonparametric approach to canonical correlation analysis with applications to low CNR functional MRI data. Magn. Reson. Med. 2003, 50:354-365.
    • (2003) Magn. Reson. Med. , vol.50 , pp. 354-365
    • Nandy, R.R.1    Cordes, D.2
  • 55
    • 33748178966 scopus 로고    scopus 로고
    • Beyond mind-reading: multi-voxel pattern analysis of fMRI data
    • Norman K.A., Polyn S.M., Detre G.J., Haxby J.V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 2006, 10:424-430.
    • (2006) Trends Cogn. Sci. , vol.10 , pp. 424-430
    • Norman, K.A.1    Polyn, S.M.2    Detre, G.J.3    Haxby, J.V.4
  • 56
    • 84857046340 scopus 로고    scopus 로고
    • Bayesian hypothesis testing for pattern discrimination in brain decoding
    • Olivetti E., Veeramachaneni S., Nowakowska E. Bayesian hypothesis testing for pattern discrimination in brain decoding. Pattern Recognit. 2012, 45:2075-2084.
    • (2012) Pattern Recognit. , vol.45 , pp. 2075-2084
    • Olivetti, E.1    Veeramachaneni, S.2    Nowakowska, E.3
  • 58
    • 79954991674 scopus 로고    scopus 로고
    • Information mapping with pattern classifiers: a comparative study
    • Pereira F., Botvinick M. Information mapping with pattern classifiers: a comparative study. Neuroimage 2011, 56:476-496.
    • (2011) Neuroimage , vol.56 , pp. 476-496
    • Pereira, F.1    Botvinick, M.2
  • 59
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: a tutorial overview
    • Pereira F., Mitchell T., Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 2009, 45:S199-S209.
    • (2009) Neuroimage , vol.45
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 60
    • 74549181616 scopus 로고    scopus 로고
    • Reproducibility distinguishes conscious from nonconscious neural representations
    • Schurger A., Pereira F., Treisman A., Cohen J.D. Reproducibility distinguishes conscious from nonconscious neural representations. Science 2010, 327:97-99.
    • (2010) Science , vol.327 , pp. 97-99
    • Schurger, A.1    Pereira, F.2    Treisman, A.3    Cohen, J.D.4
  • 62
    • 84868260207 scopus 로고    scopus 로고
    • Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control
    • Stelzer J., Chen Y., Turner R. Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control. Neuroimage 2013, 65:69-82.
    • (2013) Neuroimage , vol.65 , pp. 69-82
    • Stelzer, J.1    Chen, Y.2    Turner, R.3
  • 65
    • 82955169665 scopus 로고    scopus 로고
    • Decoding patterns of human brain activity
    • Tong F., Pratte M.S. Decoding patterns of human brain activity. Annu. Rev. Psychol. 2012, 63:483-509.
    • (2012) Annu. Rev. Psychol. , vol.63 , pp. 483-509
    • Tong, F.1    Pratte, M.S.2
  • 66
    • 33645784163 scopus 로고    scopus 로고
    • Improved variance estimation of classification performance via reduction of bias caused by small sample size
    • Wickenberg-Bolin U., Goransson H., Fryknas M., Gustafsson M., Isaksson A. Improved variance estimation of classification performance via reduction of bias caused by small sample size. BMC Bioinformatics 2006, 7:127.
    • (2006) BMC Bioinformatics , vol.7 , pp. 127
    • Wickenberg-Bolin, U.1    Goransson, H.2    Fryknas, M.3    Gustafsson, M.4    Isaksson, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.