메뉴 건너뛰기




Volumn 43, Issue SUPPL. 2, 2012, Pages 105-110

Application and comparison of prediction models of support vector machines and back-propagation artificial neural network for debris flow average velocity

Author keywords

Average velocity; Back propagation artificial neural network; Debris flow; Jiangjia gully; Support vector machines

Indexed keywords

AVERAGE VELOCITY; BACK PROPAGATION ARTIFICIAL NEURAL NETWORK (BPANN); COUPLING RELATIONSHIPS; DEBRIS FLOWS; JIANGJIA GULLY; PREDICTIVE ACCURACY; REAL TIME MONITORING; VISCOUS DEBRIS FLOWS;

EID: 84876094473     PISSN: 05599350     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (13)

References (25)
  • 1
    • 84876072386 scopus 로고    scopus 로고
    • Chinese source
    • 2008, 48(6): 887-891.
    • (2008) , vol.48 , Issue.6 , pp. 887-891
  • 2
    • 7544220199 scopus 로고    scopus 로고
    • Geohazards of slope mass movement and its prevention in Hong Kong
    • Chen H, Lee C F. Geohazards of slope mass movement and its prevention in Hong Kong [J]. Engineering geology, 2004, 76: 3-25.
    • (2004) Engineering Geology , vol.76 , pp. 3-25
    • Chen, H.1    Lee, C.F.2
  • 3
    • 0031148230 scopus 로고    scopus 로고
    • Debris flow run-out and landslide sediment delivery model tests
    • Bathurst J C, Burton A, Ward T J. Debris flow run-out and landslide sediment delivery model tests [J]. Journal of Hydraulic Engineering, 1997, 123(5): 410-419.
    • (1997) Journal of Hydraulic Engineering , vol.123 , Issue.5 , pp. 410-419
    • Bathurst, J.C.1    Burton, A.2    Ward, T.J.3
  • 4
    • 0025571685 scopus 로고
    • Predicting deposition of debris flows in mountain channels
    • Benda L E, Cundy T W. Predicting deposition of debris flows in mountain channels [J]. Can Geotech, 1990, 27: 409-417.
    • (1990) Can Geotech , vol.27 , pp. 409-417
    • Benda, L.E.1    Cundy, T.W.2
  • 7
    • 84876072226 scopus 로고    scopus 로고
    • Chinese source
    • 2007, 18(4): 29-39.
    • (2007) , vol.18 , Issue.4 , pp. 29-39
  • 8
    • 84876072847 scopus 로고    scopus 로고
    • Chinese source
    • 2008, 28(4): 296-300.
    • (2008) , vol.28 , Issue.4 , pp. 296-300
  • 9
    • 84876098155 scopus 로고    scopus 로고
    • Chinese source
    • 2010, 42(10): 1642-1645.
    • (2010) , vol.42 , Issue.10 , pp. 1642-1645
  • 10
    • 33748453765 scopus 로고    scopus 로고
    • Debris flow hazard assessment based on support vector machine
    • Yuan Lifeng, Zhang Youshui. Debris flow hazard assessment based on support vector machine [J]. Wuhan University Journal of Natural Sciences, 2006, 11(4): 896-900.
    • (2006) Wuhan University Journal of Natural Sciences , vol.11 , Issue.4 , pp. 896-900
    • Yuan, L.1    Zhang, Y.2
  • 11
    • 34948896220 scopus 로고    scopus 로고
    • Debris flow hazard assessment in reservoir zone of Jishi Valley Hydropower Station, Yellow River
    • Hu Yadong, Fu Ronghua, Xia Keqin. Debris flow hazard assessment in reservoir zone of Jishi Valley Hydropower Station, Yellow River [J]. Journal of Catastrophology, 2004, 19(2): 36-41.
    • (2004) Journal of Catastrophology , vol.19 , Issue.2 , pp. 36-41
    • Hu, Y.1    Fu, R.2    Xia, K.3
  • 12
    • 84876093055 scopus 로고
    • Chinese source
    • 1995: 15-26.
    • (1995) , pp. 15-26
  • 13
    • 84876079647 scopus 로고    scopus 로고
    • Chinese source
    • 2004: 168-170, 214-218.
    • (2004)
  • 14
    • 0038108443 scopus 로고    scopus 로고
    • Assessment on the severity of debris flows in mountainous creeks of southwest China
    • Carmisch Partenkirenchen, Germany
    • Liu X. Assessment on the severity of debris flows in mountainous creeks of southwest China [A]. Proceedings of International Symposium of Interpraevent [C]//Carmisch Partenkirenchen, Germany, 1996. 145-154.
    • (1996) Proceedings of International Symposium of Interpraevent , pp. 145-154
    • Liu, X.1
  • 15
    • 84876072387 scopus 로고    scopus 로고
    • Chinese source
    • 2003, 22(2): 241-245.
    • (2003) , vol.22 , Issue.2 , pp. 241-245
  • 16
    • 33645973241 scopus 로고    scopus 로고
    • Monthly runoff simulation: Comparing and combining conceptual and neural network models
    • Nilsson P, Uvo C B, Ronny B. Monthly runoff simulation: Comparing and combining conceptual and neural network models [J]. Journal of Hydrology, 2006, 321: 344-363.
    • (2006) Journal of Hydrology , vol.321 , pp. 344-363
    • Nilsson, P.1    Uvo, C.B.2    Ronny, B.3
  • 17
    • 0035104376 scopus 로고    scopus 로고
    • An application of artificial neural networks for rainfall forecasting
    • Luck K C, Ball J E, Sharma A. An application of artificial neural networks for rainfall forecasting [J]. Mathematical and Computer Modeling, 2001, 33: 683-693.
    • (2001) Mathematical and Computer Modeling , vol.33 , pp. 683-693
    • Luck, K.C.1    Ball, J.E.2    Sharma, A.3
  • 18
    • 0003401675 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • NeuroCOLT2 Technical Report Series NC2-TR-1998030
    • Alex J Smola, Bernhard Schoelkopf. A tutorial on support vector regression [R]. NeuroCOLT2 Technical Report Series NC2-TR-1998030, 1998.
    • (1998)
    • Smola, A.J.1    Schoelkopf, B.2
  • 19
    • 0004322632 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • Technical Report MSR-TR-98-14, April
    • John C Platt. Sequential minimal optimization: a fast algorithm for training support vector machines [R]. Technical Report MSR-TR-98-14, April, 1998.
    • (1998)
    • Platt, J.C.1
  • 20
    • 84876079082 scopus 로고    scopus 로고
    • Chinese source
    • Vladimir N Vapnik. 2000.
    • (2000)
    • Vapnik, V.N.1
  • 21
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • Toy F E H, Cao L J. Modified support vector machines in financial time series forecasting [J]. Neuro computing, 2002, 48: 847-861.
    • (2002) Neuro Computing , vol.48 , pp. 847-861
    • Toy, F.E.H.1    Cao, L.J.2
  • 22
    • 0036160859 scopus 로고    scopus 로고
    • Efficient SVM regression training with SMO
    • Flake G W, Lawrence S. Efficient SVM regression training with SMO [J]. Machine Learning, 2002, 41(1): 271-290.
    • (2002) Machine Learning , vol.41 , Issue.1 , pp. 271-290
    • Flake, G.W.1    Lawrence, S.2
  • 24
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier H R, Dandy G C. Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications [J]. Environ. Model. Software, 2000, 15: 101-124.
    • (2000) Environ. Model. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 25
    • 84876083621 scopus 로고    scopus 로고
    • Chinese source
    • 2001.
    • (2001)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.