메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages

Random forest methodology for model-based recursive partitioning: The mobForest package for R

Author keywords

Ensemble; Model based recursive partitioning; R; Random forests

Indexed keywords

ENSEMBLE; NON-PARAMETRIC MODELING; PREDICTIVE ACCURACY; R; RANDOM FORESTS; RECURSIVE PARTITION; RECURSIVE PARTITIONING; VARIABLE IMPORTANCES;

EID: 84875913695     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-14-125     Document Type: Article
Times cited : (93)

References (11)
  • 1
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001, 45(1):5-32.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 3
    • 72449170109 scopus 로고    scopus 로고
    • An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests
    • 2927982, 19968396
    • Strobl C, Malley J, Tutz G. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological methods 2009, 14(4):323-348. 2927982, 19968396.
    • (2009) Psychological methods , vol.14 , Issue.4 , pp. 323-348
    • Strobl, C.1    Malley, J.2    Tutz, G.3
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach Learn 1996, 24(2):123-140.
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E, Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn 1999, 36(1-2):105-139.
    • (1999) Mach Learn , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 8
    • 0043289776 scopus 로고    scopus 로고
    • Analyzing bagging
    • Buhlmann P, Yu B. Analyzing bagging. Ann Stat 2002, 30(4):927-961.
    • (2002) Ann Stat , vol.30 , Issue.4 , pp. 927-961
    • Buhlmann, P.1    Yu, B.2
  • 9
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich TG. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 2000, 40(2):139-157.
    • (2000) Mach Learn , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 11
    • 33646178951 scopus 로고    scopus 로고
    • Combined pharmacotherapies and behavioral interventions for alcohol dependence: the COMBINE study: a randomized controlled trial
    • 10.1001/jama.295.17.2003, 16670409
    • Anton RF, O'Malley SS, Ciraulo DA, Cisler RA, Couper D, Donovan DM, Gastfriend DR, Hosking JD, Johnson BA, LoCastro JS. Combined pharmacotherapies and behavioral interventions for alcohol dependence: the COMBINE study: a randomized controlled trial. JAMA 2006, 295(17):2003-2017. 10.1001/jama.295.17.2003, 16670409.
    • (2006) JAMA , vol.295 , Issue.17 , pp. 2003-2017
    • Anton, R.F.1    O'Malley, S.S.2    Ciraulo, D.A.3    Cisler, R.A.4    Couper, D.5    Donovan, D.M.6    Gastfriend, D.R.7    Hosking, J.D.8    Johnson, B.A.9    LoCastro, J.S.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.