-
13
-
-
33644583919
-
-
See Chapter 5.4.3.4 of ref. 1 and references cited therein
-
H. Suga Proc. Jpn. Acad., Ser. B 2005 81 349
-
(2005)
Proc. Jpn. Acad., Ser. B
, vol.81
, pp. 349
-
-
Suga, H.1
-
29
-
-
84861930178
-
-
T. Bartels-Rausch V. Bergeron J. H. E. Cartwright R. Escribano J. L. Finney H. Grothe P. J. Gutierrez J. Haapala W. F. Kuhs J. B. C. Pettersson S. D. Price C. I. Sainz-Diaz D. J. Stokes G. Strazzulla E. S. Thomson H. Trinks N. Uras-Aytemiz Rev. Mod. Phys. 2012 84 885
-
(2012)
Rev. Mod. Phys.
, vol.84
, pp. 885
-
-
Bartels-Rausch, T.1
Bergeron, V.2
Cartwright, J.H.E.3
Escribano, R.4
Finney, J.L.5
Grothe, H.6
Gutierrez, P.J.7
Haapala, J.8
Kuhs, W.F.9
Pettersson, J.B.C.10
Price, S.D.11
Sainz-Diaz, C.I.12
Stokes, D.J.13
Strazzulla, G.14
Thomson, E.S.15
Trinks, H.16
Uras-Aytemiz, N.17
-
39
-
-
0035312876
-
-
1 contribution than shown in Fig. 1 was observed for KOH doped hexagonal ice which, however, is not in the focus of the present work, see
-
M. Oguro J. Phys. Chem. Solids 2001 62 897
-
(2001)
J. Phys. Chem. Solids
, vol.62
, pp. 897
-
-
Oguro, M.1
-
51
-
-
0003817181
-
-
Springer, Berlin, 120 ff The case of a free induction signal arising from a correlation function decaying to zero (corresponding to isotropic motion) was explicitly dealt with in ref. 49, see in particular p. 421ff where results for solid-echo refocusing are also presented. Furthermore, echoes in the presence of isotropic motions are treated in ref. 48
-
R. Kimmich, Tomography, Diffusion, Relaxometry, Springer, Berlin, 1997, pp. 120 ff
-
(1997)
Tomography, Diffusion, Relaxometry
-
-
Kimmich, R.1
-
53
-
-
0003561703
-
-
in, ed. Diehl, E. Fluck, H. Günther, Kosfeld and J. Seelig, Springer, Berlin, 30, p. 160, see in particular their Fig. 5
-
G. Fleischer and F. Fujara, in NMR-Basic Principles and Progress, ed., P. Diehl, E. Fluck, H. Günther, P. Kosfeld, and, J. Seelig, Springer, Berlin, 1994, vol. 30, p. 160
-
(1994)
NMR - Basic Principles and Progress
-
-
Fleischer, G.1
Fujara, F.2
-
54
-
-
26444494948
-
-
h hampers a precise experimental determination of the HOH bending angle and from a theoretical study they find 106.3° ± 0.4° Based on density functional calculations
-
J.-L. Kuo M. L. Klein W. F. Kuhs J. Chem. Phys. 2005 123 134505
-
(2005)
J. Chem. Phys.
, vol.123
, pp. 134505
-
-
Kuo, J.-L.1
Klein, M.L.2
Kuhs, W.F.3
-
58
-
-
41049107485
-
-
The calculated lines in Fig. 7 are left-shifted by 4 μs to account for the finite width of the radio-frequency pulses
-
B. Geil G. Diezemann R. Böhmer J. Chem. Phys. 2008 128 114506
-
(2008)
J. Chem. Phys.
, vol.128
, pp. 114506
-
-
Geil, B.1
Diezemann, G.2
Böhmer, R.3
-
66
-
-
84899850891
-
-
in:, ed. W. F. Kuhs, Royal Society of Chemistry, London, 339-346
-
C. Knight and S. J. Singer, in: Physics and Chemistry of Ice, ed., W. F. Kuhs, Royal Society of Chemistry, London, 2007, pp. 339-346
-
(2007)
Physics and Chemistry of Ice
-
-
Knight, C.1
Singer, S.J.2
-
70
-
-
84875833663
-
-
. (unpublished) Regarding the magnitude of the jump angle in liquid water it was stated that "the jury is still out", see
-
H. Nelson et al. (unpublished)
-
-
-
Nelson, H.1
-
74
-
-
84875869927
-
-
c, are often smeared out in real experiments and hence allow for a better comparison with simulations
-
J. E. Anderson Faraday Symp. Chem. Soc. 1972 6 91
-
(1972)
Faraday Symp. Chem. Soc.
, vol.6
, pp. 91
-
-
Anderson, J.E.1
|