메뉴 건너뛰기




Volumn 7629 LNAI, Issue PART 1, 2013, Pages 73-86

Fuzzy clustering for semi-supervised learning - Case study: Construction of an emotion lexicon

Author keywords

[No Author keywords available]

Indexed keywords

HARD CLUSTERING; MEMBERSHIP VALUES; SEMI-SUPERVISED CLASSIFICATION; SEMI-SUPERVISED LEARNING; UNSUPERVISED FUZZY CLUSTERING; WORDNET;

EID: 84875844919     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-37807-2_7     Document Type: Conference Paper
Times cited : (22)

References (37)
  • 1
    • 80053247759 scopus 로고    scopus 로고
    • Emotions from text: Machine learning for text-based emotion prediction
    • Alm, O.C., Roth, D., Richard, S.: Emotions from text: Machine learning for text-based emotion prediction. In: Proceedings of HLT-EMNLP, pp. 579-586 (2005)
    • (2005) Proceedings of HLT-EMNLP , pp. 579-586
    • Alm, O.C.1    Roth, D.2    Richard, S.3
  • 2
    • 84966592581 scopus 로고    scopus 로고
    • CLaC and CLaC-NB: Knowledge-based and corpus-based approaches to sentiment tagging
    • Andreevskaia, A., Bergler, S.: CLaC and CLaC-NB: Knowledge-based and corpus-based approaches to sentiment tagging. In: 4th International Workshop on SemEval, pp. 117-120 (2007)
    • (2007) 4th International Workshop on SemEval , pp. 117-120
    • Andreevskaia, A.1    Bergler, S.2
  • 3
    • 71049115088 scopus 로고    scopus 로고
    • Customizing sentiment classifiers to new domains: A case study
    • Aue, A., Gamon, M.: Customizing sentiment classifiers to new domains: A case study. In: Proc. of RANLP (2005)
    • Proc. of RANLP (2005)
    • Aue, A.1    Gamon, M.2
  • 5
    • 85034054192 scopus 로고    scopus 로고
    • SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining
    • Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. In: LRE, pp. 2200-2204 (2010)
    • (2010) LRE , pp. 2200-2204
    • Baccianella, S.1    Esuli, A.2    Sebastiani, F.3
  • 6
    • 85037350895 scopus 로고    scopus 로고
    • A Bootstrapping Method for Building Subjectivity Lexicons for Languages with Scarce Resources
    • Banea, C., Mihalcea, R., Wiebe, J.: A Bootstrapping Method for Building Subjectivity Lexicons for Languages with Scarce Resources. In: LREC (2008)
    • (2008) LREC
    • Banea, C.1    Mihalcea, R.2    Wiebe, J.3
  • 10
    • 79960150095 scopus 로고    scopus 로고
    • SenticNet: A publicly available semantic resource for opinion mining
    • Cambria, E., Speer, R., Havasi, C., Hussain, A.: SenticNet: A publicly available semantic resource for opinion mining. In: Proc. of AAAI CSK, pp. 14-18 (2010)
    • (2010) Proc. of AAAI CSK , pp. 14-18
    • Cambria, E.1    Speer, R.2    Havasi, C.3    Hussain, A.4
  • 15
    • 12244305149 scopus 로고    scopus 로고
    • Mining and summarizing customer reviews
    • Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the ACM SIGKDD, pp. 168-177 (2004)
    • (2004) Proceedings of the ACM SIGKDD , pp. 168-177
    • Hu, M.1    Liu, B.2
  • 18
    • 77955075329 scopus 로고    scopus 로고
    • Sentiment Analysis: A Multi-Faceted Problem
    • Liu, B.: Sentiment Analysis: A Multi-Faceted Problem. IEEE Intelligent Systems (2010)
    • (2010) IEEE Intelligent Systems
    • Liu, B.1
  • 19
    • 84976702763 scopus 로고
    • WordNet: A lexical database for English
    • Miller, A.G.: WordNet: a lexical database for English. Communications of the ACM 38(11), 39-41 (1995)
    • (1995) Communications of the ACM , vol.38 , Issue.11 , pp. 39-41
    • Miller, A.G.1
  • 21
    • 77949355554 scopus 로고    scopus 로고
    • SentiFul: Generating a Reliable Lexicon for Sentiment Analysis
    • IEEE
    • Neviarouskaya, A., Prendinger, H., Ishizuka, M.: SentiFul: Generating a Reliable Lexicon for Sentiment Analysis. In: ACII 2009, pp. 363-368. IEEE (2009)
    • (2009) ACII 2009 , pp. 363-368
    • Neviarouskaya, A.1    Prendinger, H.2    Ishizuka, M.3
  • 22
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up? Sentiment classification using machine learning techniques
    • Pang, B., Lillian, L., Shivakumar, V.: Thumbs up? Sentiment classification using machine learning techniques. In: The Proc. of EMNLP, pp. 79-86 (2002)
    • (2002) The Proc. of EMNLP , pp. 79-86
    • Pang, B.1    Lillian, L.2    Shivakumar, V.3
  • 25
    • 84898734877 scopus 로고    scopus 로고
    • Extending SenticNet with Affective Labels for Concept-based Opinion Mining
    • submitted
    • Poria, S., Gelbukh, A., Das, D., Bandyopadhyay, S.: Extending SenticNet with Affective Labels for Concept-based Opinion Mining. IEEE Intelligent Systems (submitted, 2013)
    • (2013) IEEE Intelligent Systems
    • Poria, S.1    Gelbukh, A.2    Das, D.3    Bandyopadhyay, S.4
  • 26
    • 84859916751 scopus 로고    scopus 로고
    • Using emoticons to reduce dependency in machine learning techniques for sentiment classification
    • Read, J.: Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In: Proceedings of the ACL Student Research Workshop (2005)
    • Proceedings of the ACL Student Research Workshop (2005)
    • Read, J.1
  • 28
    • 27944495684 scopus 로고    scopus 로고
    • What are emotions? And how can they be measured?
    • Scherer, K.R.: What are emotions? And how can they be measured? Social Science Information 44(4), 693-727 (2005)
    • (2005) Social Science Information , vol.44 , Issue.4 , pp. 693-727
    • Scherer, K.R.1
  • 29
    • 84875818091 scopus 로고    scopus 로고
    • Automatic emotional personality description using linguistic data
    • Sidorov, G., Castro-Sánchez, N.A.: Automatic emotional personality description using linguistic data. Research in Computing Science 20, 89-94 (2006)
    • (2006) Research in Computing Science , vol.20 , pp. 89-94
    • Sidorov, G.1    Castro-Sánchez, N.A.2
  • 32
    • 84859908006 scopus 로고    scopus 로고
    • Extracting Semantic Orientations of Words using Spin Model
    • Takamura, H., Inui, T., Okumura, M.: Extracting Semantic Orientations of Words using Spin Model. In: 43rd ACL, pp. 133-140 (2005)
    • (2005) 43rd ACL , pp. 133-140
    • Takamura, H.1    Inui, T.2    Okumura, M.3
  • 33
    • 2442507763 scopus 로고    scopus 로고
    • Measuring praise and criticism: Inference of semantic orientation from association
    • Turney, P.D., Littman, M.L.: Measuring praise and criticism: Inference of semantic orientation from association. ACM TIS 21(4), 315-346 (2003)
    • (2003) ACM TIS , vol.21 , Issue.4 , pp. 315-346
    • Turney, P.D.1    Littman, M.L.2
  • 34
    • 38349053259 scopus 로고    scopus 로고
    • Not All Words Are Created Equal: Extracting Semantic Orientation as a Function of Adjective Relevance
    • Orgun, M.A., Thornton, J. (eds.) AI 2007. Springer, Heidelberg
    • Voll, K., Taboada, M.J.: Not All Words Are Created Equal: Extracting Semantic Orientation as a Function of Adjective Relevance. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 337-346. Springer, Heidelberg (2007)
    • (2007) LNCS (LNAI) , vol.4830 , pp. 337-346
    • Voll, K.1    Taboada, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.