메뉴 건너뛰기




Volumn 56, Issue 4, 2013, Pages 1-16

Sparse kernel logistic regression based on L1/2 regularization

Author keywords

classification; kernel logistic regression; support vectors; thresholding algorithm

Indexed keywords

CLASSIFICATION (OF INFORMATION); ITERATIVE METHODS; SEMI-SUPERVISED LEARNING; SUPPORT VECTOR MACHINES; SUPPORT VECTOR REGRESSION;

EID: 84875640374     PISSN: 1674733X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11432-012-4679-3     Document Type: Article
Times cited : (15)

References (33)
  • 1
    • 33744584654 scopus 로고
    • Introduction of decision trees
    • Quinlan J R. Introduction of decision trees. Mach Learn, 1986, 1: 81-106.
    • (1986) Mach Learn , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 3
    • 85149612939 scopus 로고
    • Fast effective rule introduction
    • San Fransisco: Morgan Kaufmann
    • Cohen W. Fast effective rule introduction. In: Proceedings of ICML-95. San Fransisco: Morgan Kaufmann, 1995. 115-123.
    • (1995) Proceedings of ICML-95 , pp. 115-123
    • Cohen, W.1
  • 4
    • 35148838877 scopus 로고
    • The weighted majority algorithm
    • Littlestone N, Warmuth M. The weighted majority algorithm. Inform Comput, 1994, 108: 212-261.
    • (1994) Inform Comput , vol.108 , pp. 212-261
    • Littlestone, N.1    Warmuth, M.2
  • 5
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Freund Y, Schapire R. Large margin classification using the perceptron algorithm. Mach Learn, 1999, 37: 277-296.
    • (1999) Mach Learn , vol.37 , pp. 277-296
    • Freund, Y.1    Schapire, R.2
  • 8
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman J H. Regularized discriminant analysis. J Am Stat Assoc, 1989, 84: 165-175.
    • (1989) J Am Stat Assoc , vol.84 , pp. 165-175
    • Friedman, J.H.1
  • 10
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inform Theory, 1967, 13: 7-21.
    • (1967) IEEE Trans Inform Theory , vol.13 , pp. 7-21
    • Cover, T.1    Hart, P.2
  • 11
    • 46149086948 scopus 로고    scopus 로고
    • A reduction technique for nearest-neighbor classification: small groups of examples
    • Kubat, Martin M C. A reduction technique for nearest-neighbor classification: small groups of examples. Intell Data Anal, 2001, 5: 463-476.
    • (2001) Intell Data Anal , vol.5 , pp. 463-476
    • Kubat1    Martin, M.C.2
  • 12
    • 67649394203 scopus 로고    scopus 로고
    • A sparsity driven kernel machine based on minimizing a generalization error bound
    • Peleg D, Meir R. A sparsity driven kernel machine based on minimizing a generalization error bound. Pattern Recogn, 2009, 42: 2607-2614.
    • (2009) Pattern Recogn , vol.42 , pp. 2607-2614
    • Peleg, D.1    Meir, R.2
  • 13
    • 61549128441 scopus 로고    scopus 로고
    • Robust face recognition via sparse representation
    • Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation. IEEE Trans Pattern Anal, 2009, 31: 210-227.
    • (2009) IEEE Trans Pattern Anal , vol.31 , pp. 210-227
    • Wright, J.1    Yang, A.Y.2    Ganesh, A.3
  • 15
    • 42749108148 scopus 로고    scopus 로고
    • Sparse kernel logistic regression using incremental feature selection for textindependent speaker indentification
    • San Juan: IEEE
    • Katz M, Schaffoner M, Andelic E, et al. Sparse kernel logistic regression using incremental feature selection for textindependent speaker indentification. In: IEEE Odyssey 2006: the Speaker and Language Recognition Workshop. San Juan: IEEE, 2006. 1-6.
    • (2006) IEEE Odyssey 2006: The Speaker and Language Recognition Workshop , pp. 1-6
    • Katz, M.1    Schaffoner, M.2    Andelic, E.3
  • 16
    • 21244437589 scopus 로고    scopus 로고
    • Hartemink, sparse multinomial logistic regression: fast algorithms and generalization bounds
    • Krishnapuram B, Carin L, Mario A T, et al. Hartemink, sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Trans Pattern Anal, 2005, 27: 957-967.
    • (2005) IEEE Trans Pattern Anal , vol.27 , pp. 957-967
    • Krishnapuram, B.1    Carin, L.2    Mario, A.T.3
  • 17
    • 15944424353 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • Zhu J, Hastie T. Kernel logistic regression and the import vector machine. J Comput Graph Stat, 2005, 14: 185-205.
    • (2005) J Comput Graph Stat , vol.14 , pp. 185-205
    • Zhu, J.1    Hastie, T.2
  • 18
    • 34547234238 scopus 로고    scopus 로고
    • Support vector machines with adaptive Lq penalty
    • Liu Y F, Zhang H H, Ahn J, et al. Support vector machines with adaptive Lq penalty. Comput Stat Data An, 2007, 51: 6380-6394.
    • (2007) Comput Stat Data An , vol.51 , pp. 6380-6394
    • Liu, Y.F.1    Zhang, H.H.2    Ahn, J.3
  • 20
    • 84945277595 scopus 로고    scopus 로고
    • Probabilistic discriminative kernel classifiers for multi-class problems
    • B. Radig and S. Florczyk (Eds.), London: Springer-Verlag
    • Roth V. Probabilistic discriminative kernel classifiers for multi-class problems. In: Radig B, Florczyk S, eds. Pattern recognition-DAGM'01. London: Springer-Verlag, 2001. 246-253.
    • (2001) Pattern Recognition-DAGM'01 , pp. 246-253
    • Roth, V.1
  • 22
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • San Fransisco: Morgan Kaufmann
    • Bradley P S, Mangasarian O L. Feature selection via concave minimization and support vector machines. In: Proceedings of 13th ICML. San Fransisco: Morgan Kaufmann, 1998. 82-90.
    • (1998) Proceedings of 13th ICML , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 26
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: universal encoding strategies?
    • Candès E, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inform Theory, 2006, 52: 5406-5425.
    • (2006) IEEE Trans Inform Theory , vol.52 , pp. 5406-5425
    • Candès, E.1    Tao, T.2
  • 28
    • 57349145416 scopus 로고    scopus 로고
    • Iterative thresholding for sparse approximations
    • Blumensath T, Davies M E. Iterative thresholding for sparse approximations. J Fourier Anal Appl, 2008, 14: 629-654.
    • (2008) J Fourier Anal Appl , vol.14 , pp. 629-654
    • Blumensath, T.1    Davies, M.E.2
  • 29
    • 84871085657 scopus 로고    scopus 로고
    • 1/2 regularization: a thresholding representation theory and a fast solver
    • 1/2 regularization: a thresholding representation theory and a fast solver. IEEE Trans Neural Networ Learn Syst, 2012, 23: 1013-1027.
    • (2012) IEEE Trans Neural Networ Learn Syst , vol.23 , pp. 1013-1027
    • Xu, Z.B.1    Chang, X.Y.2    Xu, F.M.3
  • 30
    • 49949144765 scopus 로고
    • The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming
    • Bregman L. The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput Math Math Phys, 1967, 7: 200-217.
    • (1967) USSR Comput Math Math Phys , vol.7 , pp. 200-217
    • Bregman, L.1
  • 31
    • 0000696616 scopus 로고
    • Neural networks and related method for classification
    • Ripely B D. Neural networks and related method for classification. J Roy Stat Soc-Ser B, 1994, 56: 409-456.
    • (1994) J Roy Stat Soc-Ser B , vol.56 , pp. 409-456
    • Ripely, B.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.