메뉴 건너뛰기




Volumn 46, Issue 2, 2013, Pages 354-362

A text processing pipeline to extract recommendations from radiology reports

Author keywords

Natural language processing; Recommendation identification; Section segmentation

Indexed keywords

AUTOMATED SYSTEMS; DATA IMBALANCE; FEATURE TYPES; INCIDENTAL FINDINGS; NATURAL LANGUAGE PROCESSING; RADIOLOGY REPORTS; STATISTICAL APPROACH; TEXT CLASSIFICATION METHODS;

EID: 84875621214     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2012.12.005     Document Type: Article
Times cited : (68)

References (32)
  • 2
    • 84928096355 scopus 로고    scopus 로고
    • Managing incidental findings on abdominal CT: white paper of the ACR incidental findings committee
    • Berland L.L., Silverman S.G., Gore R.M., Mayo-Smith W.W., Megibow A.J., Yee J., et al. Managing incidental findings on abdominal CT: white paper of the ACR incidental findings committee. J Am Coll Radiol 2010, 7(10):754-773.
    • (2010) J Am Coll Radiol , vol.7 , Issue.10 , pp. 754-773
    • Berland, L.L.1    Silverman, S.G.2    Gore, R.M.3    Mayo-Smith, W.W.4    Megibow, A.J.5    Yee, J.6
  • 3
    • 84875619927 scopus 로고    scopus 로고
    • American College of Radiology (ACR). ACR practice guideline for communication of diagnostic imaging findings. <> [accessed 01.05.12].
    • American College of Radiology (ACR). ACR practice guideline for communication of diagnostic imaging findings. <> [accessed 01.05.12]. http://www.acr.org/SecondaryMainMenuCategories/quality_safety/guidelines/dx/comm_diag_rad.aspx.
  • 4
    • 84875634347 scopus 로고    scopus 로고
    • The Royal College of Radiologists. Standards for Communication of critical, urgent and unexpected significant radiological findings. <> [accessed 01.05.12].
    • The Royal College of Radiologists. Standards for Communication of critical, urgent and unexpected significant radiological findings. <> [accessed 01.05.12]. http://www.rcr.ac.uk/docs/radiology/pdf/Stand_urgent_reports.pdf.
  • 5
  • 6
    • 34250891942 scopus 로고    scopus 로고
    • Communication outcomes of critical imaging results in a computerized notification system
    • Singh H., Arora H.S., Vij M.S., Rao R., Khan M.M., Petersen L.A. Communication outcomes of critical imaging results in a computerized notification system. J Am Med Inform Assoc 2007, 14(4):459-466.
    • (2007) J Am Med Inform Assoc , vol.14 , Issue.4 , pp. 459-466
    • Singh, H.1    Arora, H.S.2    Vij, M.S.3    Rao, R.4    Khan, M.M.5    Petersen, L.A.6
  • 7
    • 79955836542 scopus 로고    scopus 로고
    • Medical error: a 60-year-old man with delayed care for a renal mass
    • Schiff G.D. Medical error: a 60-year-old man with delayed care for a renal mass. JAMA 2011, 305(18):1890-1898.
    • (2011) JAMA , vol.305 , Issue.18 , pp. 1890-1898
    • Schiff, G.D.1
  • 8
    • 27144449606 scopus 로고    scopus 로고
    • Guildelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society
    • MacMahon H., Austin J.H., Gamsu G., Herold C.J., Jett J.R., Naidich D.P., et al. Guildelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology 2005, 327(2):395-400.
    • (2005) Radiology , vol.327 , Issue.2 , pp. 395-400
    • MacMahon, H.1    Austin, J.H.2    Gamsu, G.3    Herold, C.J.4    Jett, J.R.5    Naidich, D.P.6
  • 9
    • 78650833195 scopus 로고    scopus 로고
    • Creating a comprehensive customer service program to help convey critical and acute results of radiology studies
    • Towbin A.J., Hall S., Moskovitz J., Johnson N.D., Donnelly L.F. Creating a comprehensive customer service program to help convey critical and acute results of radiology studies. AJR Am J Roentgenol 2011, 196(1):W48-W51.
    • (2011) AJR Am J Roentgenol , vol.196 , Issue.1
    • Towbin, A.J.1    Hall, S.2    Moskovitz, J.3    Johnson, N.D.4    Donnelly, L.F.5
  • 10
    • 84928096691 scopus 로고    scopus 로고
    • The ACR guideline on communication: to be or not to be, that is the question
    • Lucey L.L., Kushner D.C. The ACR guideline on communication: to be or not to be, that is the question. J Am Coll Radiol 2010, 7(2):109-114.
    • (2010) J Am Coll Radiol , vol.7 , Issue.2 , pp. 109-114
    • Lucey, L.L.1    Kushner, D.C.2
  • 11
    • 77249173304 scopus 로고    scopus 로고
    • Failure of radiologic communication: an increasing cause of malpractice litigation and harm to patients
    • Berlin L. Failure of radiologic communication: an increasing cause of malpractice litigation and harm to patients. Appl Radiol 2012, 39(1-2).
    • (2012) Appl Radiol , vol.39 , Issue.1-2
    • Berlin, L.1
  • 13
    • 0029442304 scopus 로고
    • Architectural requirements for a multipurpose natural language processor in the clinical environment.
    • Friedman C, Johnson SB, Forman B, Starren J. Architectural requirements for a multipurpose natural language processor in the clinical environment. In: Proc Annu Symp Comput Appl, Med Care; 1995. p. 347-51.
    • (1995) Proc Annu Symp Comput Appl, Med Care , pp. 347-51
    • Friedman, C.1    Johnson, S.B.2    Forman, B.3    Starren, J.4
  • 14
    • 0030333390 scopus 로고    scopus 로고
    • Identification of suspected tuberculosis patients based on natural language processing of chest radiograph reports.
    • Jain NL, Knirsch CA, Friedman C, Hripcsak G. Identification of suspected tuberculosis patients based on natural language processing of chest radiograph reports. In: Proc AMIA Annu Fall Symp; 1996.
    • (1996) Proc AMIA Annu Fall Symp
    • Jain, N.L.1    Knirsch, C.A.2    Friedman, C.3    Hripcsak, G.4
  • 15
    • 0346580118 scopus 로고    scopus 로고
    • Identification of findings suspicious for breast cancer based on natural language processing of mammogram reports.
    • Jain NL, Friedman C. Identification of findings suspicious for breast cancer based on natural language processing of mammogram reports. In: Proc AMIA Annu Fall Symp; 1997.
    • (1997) Proc AMIA Annu Fall Symp
    • Jain, N.L.1    Friedman, C.2
  • 16
    • 0036082141 scopus 로고    scopus 로고
    • Use of natural language processing to translate clinical information from a database of 889,921 chest radiographic reports
    • Hripcsak G., Austin J.H.M., Alderson P.O., Friedman C. Use of natural language processing to translate clinical information from a database of 889,921 chest radiographic reports. Radiology 2002, 224:157-163.
    • (2002) Radiology , vol.224 , pp. 157-163
    • Hripcsak, G.1    Austin, J.H.M.2    Alderson, P.O.3    Friedman, C.4
  • 17
    • 0035564683 scopus 로고    scopus 로고
    • Selective automated indexing of findings and diagnoses in radiology reports
    • Hersh W., Mailhot M., Arnott-Smith C., Lowe H. Selective automated indexing of findings and diagnoses in radiology reports. J Biomed Inform 2001, 34:262-273.
    • (2001) J Biomed Inform , vol.34 , pp. 262-273
    • Hersh, W.1    Mailhot, M.2    Arnott-Smith, C.3    Lowe, H.4
  • 18
    • 12344287992 scopus 로고    scopus 로고
    • Application of recently developed computer algorithm for automatic classification of unstructured radiology reports: validation study
    • Dreyer K.J., Kalra M.K., Maher M.M., Hurier A.M., Asfaw B.A., Schultz T., et al. Application of recently developed computer algorithm for automatic classification of unstructured radiology reports: validation study. Radiology 2005, 234:323-339.
    • (2005) Radiology , vol.234 , pp. 323-339
    • Dreyer, K.J.1    Kalra, M.K.2    Maher, M.M.3    Hurier, A.M.4    Asfaw, B.A.5    Schultz, T.6
  • 19
    • 49149101134 scopus 로고    scopus 로고
    • Extraction of recommendation features in radiology with natural language processing: exploratory study
    • Dang P.A., Kalra M.K., Blake M.A., Schultz T.J., Halpern E.F., Dreyer K.J. Extraction of recommendation features in radiology with natural language processing: exploratory study. AJR 2008, 191:313-320.
    • (2008) AJR , vol.191 , pp. 313-320
    • Dang, P.A.1    Kalra, M.K.2    Blake, M.A.3    Schultz, T.J.4    Halpern, E.F.5    Dreyer, K.J.6
  • 20
    • 73449092699 scopus 로고    scopus 로고
    • Recommendations for additional imaging in radiology reports: multifactorial analysis of 5.9million examinations
    • Sistrom C.L., Dreyer K.J., Dang P.P., Weilburg J.B., Boland G.W., Rosenthal D.I., et al. Recommendations for additional imaging in radiology reports: multifactorial analysis of 5.9million examinations. Radiology 2009, 253(2):453-461.
    • (2009) Radiology , vol.253 , Issue.2 , pp. 453-461
    • Sistrom, C.L.1    Dreyer, K.J.2    Dang, P.P.3    Weilburg, J.B.4    Boland, G.W.5    Rosenthal, D.I.6
  • 21
    • 84874216941 scopus 로고    scopus 로고
    • Automatic identification of critical follow-up recommendation sentences in radiology reports.
    • Yetisgen-Yildiz M, Gunn ML, Xia F, Payne TH. Automatic identification of critical follow-up recommendation sentences in radiology reports. AMIA Annu Symp Proc; 2011. p. 1593-602.
    • (2011) AMIA Annu Symp Proc , pp. 1593-602
    • Yetisgen-Yildiz, M.1    Gunn, M.L.2    Xia, F.3    Payne, T.H.4
  • 22
    • 84941099136 scopus 로고    scopus 로고
    • Statistical section segmentation in free-text clinical records.
    • Proceeding of the international conference on language resources and evaluation (LREC), Istanbul, Turkey; May
    • Tepper M, Capurro D, Xia F, Vanderwende L, Yetisgen-Yildiz M. Statistical section segmentation in free-text clinical records. In: Proceeding of the international conference on language resources and evaluation (LREC), Istanbul, Turkey; May 2012.
    • (2012)
    • Tepper, M.1    Capurro, D.2    Xia, F.3    Vanderwende, L.4    Yetisgen-Yildiz, M.5
  • 23
    • 0002652285 scopus 로고    scopus 로고
    • A maximum entropy approach to natural language processing
    • Berger A.L., Pietra S.A.D., Pietra V.J.D. A maximum entropy approach to natural language processing. J Comput Linguist 1996, 22(1):39-71.
    • (1996) J Comput Linguist , vol.22 , Issue.1 , pp. 39-71
    • Berger, A.L.1    Pietra, S.A.D.2    Pietra, V.J.D.3
  • 24
    • 84875588664 scopus 로고    scopus 로고
    • A machine learning for language toolkit
    • McCallum AK. A machine learning for language toolkit; 2002. <>. http://mallet.cs.umass.edu.
    • (2002)
    • McCallum, A.K.1
  • 25
    • 84983470508 scopus 로고    scopus 로고
    • Feature-rich part-of-speech tagging with a cyclic dependency network.
    • Toutanova K, Klein D, Manning CD, Singer Y. Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proc HLT-NAACL 2003; 2003. p. 252-9.
    • (2003) Proc HLT-NAACL 2003 , pp. 252-9
    • Toutanova, K.1    Klein, D.2    Manning, C.D.3    Singer, Y.4
  • 26
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • Porter M.F. An algorithm for suffix stripping. Program 1980, 14(3):130-137.
    • (1980) Program , vol.14 , Issue.3 , pp. 130-137
    • Porter, M.F.1
  • 27
    • 0345863927 scopus 로고    scopus 로고
    • The Unified Medical Language System (UMLS): integrating biomedical terminology
    • Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucl Acids Res 2004, 32(1):D267-D270.
    • (2004) Nucl Acids Res , vol.32 , Issue.1
    • Bodenreider, O.1
  • 28
    • 77955287813 scopus 로고    scopus 로고
    • An overview of MetaMap: historical perspective and recent advances
    • Aronson A.R., Lang F.M. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc 2010, 17(3):229-236.
    • (2010) J Am Med Inform Assoc , vol.17 , Issue.3 , pp. 229-236
    • Aronson, A.R.1    Lang, F.M.2
  • 29
    • 0037375142 scopus 로고    scopus 로고
    • Feature selection on hierarchy of web documents
    • Mladenic D., Grobelnik M. Feature selection on hierarchy of web documents. Decis Support Syst 2003, 35:45-87.
    • (2003) Decis Support Syst , vol.35 , pp. 45-87
    • Mladenic, D.1    Grobelnik, M.2
  • 30
    • 33845622338 scopus 로고    scopus 로고
    • A novel feature selection algorithm for text categorization
    • Wenqian W., Houkuan H., Haibin Z., et al. A novel feature selection algorithm for text categorization. Expert Syst Appl 2007, 33:1-5.
    • (2007) Expert Syst Appl , vol.33 , pp. 1-5
    • Wenqian, W.1    Houkuan, H.2    Haibin, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.