메뉴 건너뛰기




Volumn , Issue , 2012, Pages 872-875

Predicting survial by cancer pathway gene expression profiles in the TCGA

Author keywords

brain; cancer; gene expression; survival

Indexed keywords

CANCER; CANCER GENOME; FEATURE SELECTION ALGORITHM; GLIOBLASTOMAS; OPTIMAL NUMBER; PATHWAY GENES; PERSONALIZED MEDICINES; SURVIVAL;

EID: 84875587938     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBMW.2012.6470256     Document Type: Conference Paper
Times cited : (3)

References (15)
  • 1
    • 84856496549 scopus 로고    scopus 로고
    • Next generation sequencing and bioinfonnatic bottlenecks: The current state of metagenomic data analysis
    • M. B. Scholz, C. C. Lo, and P. S. Chain, "Next generation sequencing and bioinfonnatic bottlenecks: the current state of metagenomic data analysis," Current Opinion in Biotechnology, vol. 23,2012, pp 9-15.
    • (2012) Current Opinion in Biotechnology , vol.23 , pp. 9-15
    • Scholz, M.B.1    Lo, C.C.2    Chain, P.S.3
  • 2
    • 84862323263 scopus 로고    scopus 로고
    • Biomarker identification for prostate cancer and lymph node metastasis from microarray data and protein interaction network using gene prioritization method
    • C. R. Arias, H.Y. Yeh, and V. W. Soo, "Biomarker identification for prostate cancer and lymph node metastasis from microarray data and protein interaction network using gene prioritization method," ScientificWorldJournal, vol. 2012, 2012, pp. 842727.
    • (2012) ScientificWorldJournal , vol.2012 , pp. 842727
    • Arias, C.R.1    Yeh, H.Y.2    Soo, V.W.3
  • 3
    • 84874253383 scopus 로고    scopus 로고
    • Predicting glioblastoma prognosis networks using weighted gene co-expression network analysis on TCGA data
    • Y. Xiang, C. Q. Zhang, and K. Huang, "Predicting glioblastoma prognosis networks using weighted gene co-expression network analysis on TCGA data," BMC Bioinfonnatics, vol 13, 2012, S12.
    • (2012) BMC Bioinfonnatics , vol.13
    • Xiang, Y.1    Zhang, C.Q.2    Huang, K.3
  • 4
    • 0000336139 scopus 로고
    • Regression models and life-tables
    • D. R. Cox, "Regression models and life-tables," 1. R. Statist. Soc. B., vol 34, 1972,pp. 187-220.
    • (1972) J. R. Statist. Soc. B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 5
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the highdimensional and low-sample size settings, with applications to microarray gene exprssion data
    • J. Gui and H. Li, "Penalized Cox regression analysis in the highdimensional and low-sample size settings, with applications to microarray gene exprssion data," Bioinfonnatics, vol. 21(13), 2005, pp.3001-3008.
    • (2005) Bioinfonnatics , vol.21 , Issue.13 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 6
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection viaa the Lasso
    • R. Tibshirani, "Regression shrinkage and selection viaa the Lasso", 1. R. Statist. Soc. B., vol. 58, 1996, pp. 267-288.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 7
    • 0031015557 scopus 로고    scopus 로고
    • The Lasso method for variable selection in the Cox model
    • R. Tibshirani, "The Lasso method for variable selection in the Cox model," Statist. Med., vol. 16, 1997, pp. 385-395.
    • (1997) Statist. Med , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 9
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • H. Zou and T. Hastie, "Regularization and variable selection via the elastic net," 1. R. Statist. Soc. B., vol. 67, 2005, pp. 301-320.
    • (2005) 1. R. Statist. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 10
    • 83355174923 scopus 로고    scopus 로고
    • Optimized application of penalized regression methods to diverse genomic data
    • L. Waldron, M. Pintille, M. .s. Tsao, F. A. Shepherd, C. Huttenhower, and I. Jurisica, "Optimized application of penalized regression methods to diverse genomic data," Bioinfonnatics, vol. 27(24), 2011, pp. 3399-3406.
    • (2011) Bioinfonnatics , vol.27 , Issue.24 , pp. 3399-3406
    • Waldron, L.1    Pintille, M.S.2    Tsao, F.A.3    Shepherd, C.4    Huttenhower, I.5    Jurisica, M.6
  • 11
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • J. Friedman, T. Hastie, and R. Tibshirani, "Regularization Paths for Generalized Linear Models via Coordinate Descent," 1. Stat. Softw., vol. 33(1), 2010, pp. 1-22.
    • (2010) 1. Stat. Softw , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 79952934063 scopus 로고    scopus 로고
    • Regularization paths for cox's proportional hazards model via coordinate descent
    • N. Simon, 1. Friedman, T. Hastie, and R. Tibshirani, "Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent," 1. Stat. Softw., vol. 39(5),2011, pp. 1-13.
    • (2011) J. Stat. Softw , vol.39 , Issue.5 , pp. 1-13
    • Simon, N.1    Friedman, L.2    Hastie, T.3    Tibshirani, R.4
  • 13
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria 2012, ISBN 3-900051-07-0, URL
    • R Development Core Team, "R: A language and environment for statistical computing," R Foundation for Statistical Computing, Vienna, Austria., 2012, ISBN 3-900051-07-0, URL http://www.Rproject. org/.
    • R: A Language and Environment for Statistical Computing
  • 15
    • 84858983547 scopus 로고    scopus 로고
    • KEGG for integration and interpretation of large-scale molecular datasets
    • M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe, "KEGG for integration and interpretation of large-scale molecular datasets," Nucleic Acids Res., vol. 40, 2012, pp. D109-Dl14.
    • (2012) Nucleic Acids Res , vol.40
    • Kanehisa, M.1    Goto, S.2    Sato, Y.3    Furumichi, M.4    Tanabe, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.