메뉴 건너뛰기




Volumn 3, Issue 17-20, 2009, Pages 815-827

Finite difference formulae for unequal sub-intervals using Lagrange's interpolation formula

Author keywords

Clamped Simpson's rule; Error terms; Finite difference formulae; Lagrange's interpolation formula

Indexed keywords


EID: 84875497949     PISSN: 13128876     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (54)

References (10)
  • 2
    • 22144431598 scopus 로고    scopus 로고
    • General explicit difference formulas for numerical differentiation
    • Jianping Li, General explicit difference formulas for numerical differentiation, J. Comput. Appl. Math., 183 (2005), 29-52.
    • (2005) J. Comput. Appl. Math , vol.183 , pp. 29-52
    • Li, J.1
  • 3
    • 0032691619 scopus 로고    scopus 로고
    • Closed-form expressions for the finite difference approximations of first and higher derivatives based on Taylor series
    • Khan I.R. and Onba R.. Closed-form expressions for the finite difference approximations of first and higher derivatives based on Taylor series, J. Comput. Appl.Math., 107 (1999a), 179-193.
    • (1999) J. Comput. Appl.Math , vol.107 , pp. 179-193
    • Khan, I.R.1    Ohba, R.2
  • 4
    • 0033338585 scopus 로고    scopus 로고
    • Digital differentiators based on Taylor series
    • Khan I.R. and Onba R., Digital differentiators based on Taylor series, IEICE Trans. Fund. E82-A, 12 (1999b), 2822-2824.
    • (1999) IEICE Trans. Fund , vol.E82-A , Issue.12 , pp. 2822-2824
    • Khan, I.R.1    Onba, R.2
  • 5
    • 0034510447 scopus 로고    scopus 로고
    • New finite difference formulas for numerical differentiation
    • Khan I.R. and Onba R., New finite difference formulas for numerical differentiation, J. Comput. Appl. Math., 126 (2000), 269-276.
    • (2000) J. Comput. Appl. Math , vol.126 , pp. 269-276
    • Khan, I.R.1    Onba, R.2
  • 6
    • 0035367912 scopus 로고    scopus 로고
    • Mathematical proof of explicit formulas for tapco efficients of Taylor series based FIR digital differentiators
    • Khan I.R. and Onba R., Mathematical proof of explicit formulas for tapco efficients of Taylor series based FIR digital differentiators, IEICE Trans.Fund. E84-A, (6) (2001), 1581-1584.
    • (2001) IEICE Trans.Fund , vol.E84-A , Issue.6 , pp. 1581-1584
    • Khan, I.R.1    Onba, R.2
  • 7
    • 0037407575 scopus 로고    scopus 로고
    • Taylor series based finite difference approximations of higher-degree derivatives
    • Khan I.R. and Onba R., Taylor series based finite difference approximations of higher-degree derivatives, J. Comput. Appl. Math., 154 (2003a), 115-124.
    • (2003) J. Comput. Appl. Math , vol.154 , pp. 115-124
    • Khan, I.R.1    Onba, R.2
  • 8
    • 0037437820 scopus 로고    scopus 로고
    • Mathematical proof of closed form expressions for finite difference approximations based on Taylor series
    • Khan I.R., Onba R. and N. Hozumi, Mathematical proof of closed form expressions for finite difference approximations based on Taylor series, J. Comput. Appl. Math., 150 (2003b), 303-309.
    • (2003) J. Comput. Appl. Math , vol.150 , pp. 303-309
    • Khan, I.R.1    Onba, R.2    Hozumi, N.3
  • 9
    • 84884581061 scopus 로고    scopus 로고
    • Finite difference formulae from Lagrange's interpolation formula
    • Singh A.K., Thorpe G.R., Finite difference formulae from Lagrange's interpolation formula, J. Scientific Research, 52 (2008), 263-270.
    • (2008) J. Scientific Research , vol.52 , pp. 263-270
    • Singh, A.K.1    Thorpe, G.R.2
  • 10
    • 84884560627 scopus 로고    scopus 로고
    • Simpson's 1/3-rule of integration for unequal divisions of integration domain
    • Singh A.K., Thorpe G.R., Simpson's 1/3-rule of integration for unequal divisions of integration domain, J. Concrete Applicable Maths., 1(3) (2003), 247-252.
    • (2003) J. Concrete Applicable Maths , vol.1 , Issue.3 , pp. 247-252
    • Singh, A.K.1    Thorpe, G.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.