-
1
-
-
0001061872
-
Numerical differentiation procedures for non-exact data
-
R.S. Anderssen P. Bloomfield Numerical differentiation procedures for non-exact data Numer. Math. 22 1973/74 157-182
-
(1973)
Numer. Math.
, vol.22
, pp. 157-182
-
-
Anderssen, R.S.1
Bloomfield, P.2
-
6
-
-
0015079567
-
Numerical differentiation and regularization
-
J. Cullum Numerical differentiation and regularization SIAM J. Numer. Anal. 8 2 1971 254-265
-
(1971)
SIAM J. Numer. Anal.
, vol.8
, Issue.2
, pp. 254-265
-
-
Cullum, J.1
-
8
-
-
0038285691
-
A divided difference formula for the error in Hermite interpolation
-
T. Dokken T. Lyche A divided difference formula for the error in Hermite interpolation BIT 19 1979 539-540
-
(1979)
BIT
, vol.19
, pp. 539-540
-
-
Dokken, T.1
Lyche, T.2
-
9
-
-
22144479968
-
Interpolation und numerische differentiation
-
W. Forst Interpolation und numerische differentiation J. Approx. Theory 39 2 1983 118-131
-
(1983)
J. Approx. Theory
, vol.39
, Issue.2
, pp. 118-131
-
-
Forst, W.1
-
11
-
-
22144459281
-
Numerical differentiation by means of Chebyshev polynomials orthonormalized on a system of equidistant points
-
L.P. Grabar Numerical differentiation by means of Chebyshev polynomials orthonormalized on a system of equidistant points Zh. Vychisl, Mat. i Mat. Fiz. 7 6 1967 1375-1379
-
(1967)
Zh. Vychisl, Mat. I Mat. Fiz.
, vol.7
, Issue.6
, pp. 1375-1379
-
-
Grabar, L.P.1
-
15
-
-
0035374241
-
Inverse problems light - Numerical differentiation
-
M. Hanke O. Scherzer Inverse problems light - numerical differentiation Amer. Math. Monthly 6 2001 512-522
-
(2001)
Amer. Math. Monthly
, vol.6
, pp. 512-522
-
-
Hanke, M.1
Scherzer, O.2
-
17
-
-
0032691619
-
Closed-form expressions for the finite difference approximations of first and higher derivatives based on Taylor series
-
I.R. Khan R. Ohba Closed-form expressions for the finite difference approximations of first and higher derivatives based on Taylor series J. Comput. Appl. Math. 107 1999 179-193
-
(1999)
J. Comput. Appl. Math.
, vol.107
, pp. 179-193
-
-
Khan, I.R.1
Ohba, R.2
-
18
-
-
0033338585
-
Digital differentiators based on Taylor series
-
I.R. Khan R. Ohba Digital differentiators based on Taylor series IEICE Trans. Fund. E82-A 12 1999 2822-2824
-
(1999)
IEICE Trans. Fund.
, vol.E82-A
, Issue.12
, pp. 2822-2824
-
-
Khan, I.R.1
Ohba, R.2
-
19
-
-
0034510447
-
New finite difference formulas for numerical differentiation
-
I.R. Khan R. Ohba New finite difference formulas for numerical differentiation J. Comput. Appl. Math. 126 2001 269-276
-
(2001)
J. Comput. Appl. Math.
, vol.126
, pp. 269-276
-
-
Khan, I.R.1
Ohba, R.2
-
20
-
-
0035367912
-
Mathematical proof of explicit formulas for tap-coefficients of Taylor series based FIR digital differentiators
-
I.R. Khan R. Ohba Mathematical proof of explicit formulas for tap-coefficients of Taylor series based FIR digital differentiators IEICE Trans. Fund. E84-A 6 2001 1581-1584
-
(2001)
IEICE Trans. Fund.
, vol.E84-A
, Issue.6
, pp. 1581-1584
-
-
Khan, I.R.1
Ohba, R.2
-
21
-
-
0037407575
-
Taylor series based finite difference approximations of higher-degree derivatives
-
I.R. Khan R. Ohba Taylor series based finite difference approximations of higher-degree derivatives J. Comput. Appl. Math. 154 2003 115-124
-
(2003)
J. Comput. Appl. Math.
, vol.154
, pp. 115-124
-
-
Khan, I.R.1
Ohba, R.2
-
22
-
-
0037437820
-
Mathematical proof of closed form expressions for finite difference approximations based on Taylor series
-
I.R. Khan R. Ohba N. Hozumi Mathematical proof of closed form expressions for finite difference approximations based on Taylor series J. Comput. Appl. Math. 150 2003 303-309
-
(2003)
J. Comput. Appl. Math.
, vol.150
, pp. 303-309
-
-
Khan, I.R.1
Ohba, R.2
Hozumi, N.3
-
23
-
-
0013440948
-
Numerical differentiation by finite dimensional regularization
-
T. King D. Murio Numerical differentiation by finite dimensional regularization IMA J. Numer. Anal. 6 1986 65-85
-
(1986)
IMA J. Numer. Anal.
, vol.6
, pp. 65-85
-
-
King, T.1
Murio, D.2
-
24
-
-
21844510167
-
A variational method for numerical differentiation
-
I. Knowles R. Wallace A variational method for numerical differentiation Numer. Math. 70 1995 91-110
-
(1995)
Numer. Math.
, vol.70
, pp. 91-110
-
-
Knowles, I.1
Wallace, R.2
-
27
-
-
22144481880
-
Numerical differentiation and integration on the basis of interpolation parabolic splines
-
B.I. Kvasov Numerical differentiation and integration on the basis of interpolation parabolic splines Chisl. Metody Mekh. Sploshn. Sredy 14 2 1983 68-80
-
(1983)
Chisl. Metody Mekh. Sploshn. Sredy
, vol.14
, Issue.2
, pp. 68-80
-
-
Kvasov, B.I.1
-
31
-
-
0011906037
-
On numerical differentiation
-
A.G. Ramm On numerical differentiation Mathem. Izvestija vuzov 11 1968 131-135
-
(1968)
Mathem. Izvestija Vuzov
, vol.11
, pp. 131-135
-
-
Ramm, A.G.1
-
32
-
-
84979129799
-
Stable solutions of some ill-posed problems
-
A.G. Ramm Stable solutions of some ill-posed problems Math. Meth. Appl. Sci. 3 1981 336-363
-
(1981)
Math. Meth. Appl. Sci.
, vol.3
, pp. 336-363
-
-
Ramm, A.G.1
-
33
-
-
0014864393
-
Numerical formation of finite-difference operators
-
P. Silvester Numerical formation of finite-difference operators IEEE Trans. Microwave Theory Technol. MTT-18 10 1970 740-743
-
(1970)
IEEE Trans. Microwave Theory Technol.
, vol.MTT-18
, Issue.10
, pp. 740-743
-
-
Silvester, P.1
-
35
-
-
0040477765
-
Regularization of the problem of numerical differentiation
-
V.V. Vasin Regularization of the problem of numerical differentiation Matem. zap. Ural'skii univ. 7 2 1969 29-33
-
(1969)
Matem. Zap. Ural'skii Univ.
, vol.7
, Issue.2
, pp. 29-33
-
-
Vasin, V.V.1
-
36
-
-
22144461256
-
Approximation of derivatives by smoothing splines
-
V.V. Vershinin N.N. Pavlov Approximation of derivatives by smoothing splines Vychisl. Sistemy 98 1983 83-91
-
(1983)
Vychisl. Sistemy
, vol.98
, pp. 83-91
-
-
Vershinin, V.V.1
Pavlov, N.N.2
|