메뉴 건너뛰기




Volumn 15, Issue 1, 2012, Pages 42-48

Assessing the effect of quantitative and qualitative predictors on gastric cancer individuals survival using hierarchical artificial neural network models

Author keywords

Life expectancy; Neural networks; Proportional Hazards model; Survival

Indexed keywords

ACCURACY; ADULT; AGED; ARTICLE; ARTIFICIAL NEURAL NETWORK; CANCER STAGING; CANCER SURVIVAL; ERROR; FEMALE; HUMAN; KAPLAN MEIER METHOD; MAJOR CLINICAL STUDY; MALE; METASTASIS; POSTOPERATIVE STUDY; PROPORTIONAL HAZARDS MODEL; SAMPLE SIZE; STOMACH CANCER; SURVIVAL PREDICTION;

EID: 84875474204     PISSN: 20741804     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (12)

References (17)
  • 2
    • 0027529453 scopus 로고
    • Artificial neural networks for predicting failure to survive following in-hospital cardiopulmonary resuscitation
    • Ebell MH. Artificial neural networks for predicting failure to survive following in-hospital cardiopulmonary resuscitation. J Fam Pract. 1993;36(3):297-303.
    • (1993) J Fam Pract , vol.36 , Issue.3 , pp. 297-303
    • Ebell, M.H.1
  • 3
    • 0026737665 scopus 로고
    • Prediction criteria for successful weaning from respiratory support: Statistical and connectionist analyses
    • Ashutosh K, Lee H, Mohan CK, Ranka S, Mehrotra K, Alexander C. Prediction criteria for successful weaning from respiratory support: statistical and connectionist analyses. Crit Care Med. 1992;20(9):1295-301.
    • (1992) Crit Care Med , vol.20 , Issue.9 , pp. 1295-1301
    • Ashutosh, K.1    Lee, H.2    Mohan, C.K.3    Ranka, S.4    Mehrotra, K.5    Alexander, C.6
  • 4
    • 0028044828 scopus 로고
    • Artificial neural networks for cancer research: Outcome prediction
    • Burke HB. Artificial neural networks for cancer research: outcome prediction. Semin Surg Oncol. 1994;10(1):73-9.
    • (1994) Semin Surg Oncol , vol.10 , Issue.1 , pp. 73-79
    • Burke, H.B.1
  • 7
    • 0025934806 scopus 로고
    • Use of an artificial neural network for the diagnosis of myocardial infarction
    • Baxt WG. Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med. 1991;115(11):843-8.
    • (1991) Ann Intern Med , vol.115 , Issue.11 , pp. 843-848
    • Baxt, W.G.1
  • 8
    • 0026438282 scopus 로고
    • Analysis of the clinical variables driving decision in an artificial neural network trained to identify the presence of myocardial infarction
    • Baxt WG. Analysis of the clinical variables driving decision in an artificial neural network trained to identify the presence of myocardial infarction. Ann Emerg Med. 1992;21(12):1439-44.
    • (1992) Ann Emerg Med , vol.21 , Issue.12 , pp. 1439-1444
    • Baxt, W.G.1
  • 9
    • 0026794564 scopus 로고
    • A practical application of neural network analysis for predicting outcome of individual breast cancer patients
    • Ravdin PM, Clark GM. A practical application of neural network analysis for predicting outcome of individual breast cancer patients. Breast Cancer Res Treat. 1992;22(3):285-93.
    • (1992) Breast Cancer Res Treat , vol.22 , Issue.3 , pp. 285-293
    • Ravdin, P.M.1    Clark, G.M.2
  • 10
    • 0030333384 scopus 로고    scopus 로고
    • Sequential use of neural networks for survival prediction in AIDS
    • Ohno-Machado L. Sequential use of neural networks for survival prediction in AIDS. Proc AMIA Annu Fall Symp. 1996; p. 170-4
    • (1996) Proc AMIA Annu Fall Symp , pp. 170-174
    • Ohno-Machado, L.1
  • 12
    • 1442350707 scopus 로고    scopus 로고
    • Non-linear survival analysis using neural networks
    • Ripley RM, Harris AL, Tarassenko L. Non-linear survival analysis using neural networks. Stat Med. 2004;23(5):825-42.
    • (2004) Stat Med , vol.23 , Issue.5 , pp. 825-842
    • Ripley, R.M.1    Harris, A.L.2    Tarassenko, L.3
  • 13
    • 53749101495 scopus 로고    scopus 로고
    • Assessment of gastric cancer survival: Using an artificial hierarchical neural network
    • Amiri Z, Mohammad K, Mahmoudi M, Zeraati H, Fotouhi A. Assessment of gastric cancer survival: using an artificial hierarchical neural network. Pak J Biol Sci. 2008;11(8):1076-84.
    • (2008) Pak J Biol Sci , vol.11 , Issue.8 , pp. 1076-1084
    • Amiri, Z.1    Mohammad, K.2    Mahmoudi, M.3    Zeraati, H.4    Fotouhi, A.5
  • 14
    • 24744433133 scopus 로고    scopus 로고
    • Postoperative life expectancy in gastric cancer patients and its associated factors
    • Zeraati H, Mahmoudi M, Kazemnejad A, Mohammed K. Postoperative life expectancy in gastric cancer patients and its associated factors. Saudi Med J. 2005;26(8):1203-7.
    • (2005) Saudi Med J , vol.26 , Issue.8 , pp. 1203-1207
    • Zeraati, H.1    Mahmoudi, M.2    Kazemnejad, A.3    Mohammed, K.4
  • 15
    • 0142216643 scopus 로고    scopus 로고
    • Prognosis in node-negative primary breast cancer: A neural network analysis of risk profiles using routinely assessed factors
    • Biganzoli E, Boracchi P, Coradini D, Grazia Daidone M, Marubini E. Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors. Ann Oncol. 2003;14(10):1484-93.
    • (2003) Ann Oncol , vol.14 , Issue.10 , pp. 1484-1493
    • Biganzoli, E.1    Boracchi, P.2    Coradini, D.3    Grazia, D.M.4    Marubini, E.5
  • 16
    • 33745108811 scopus 로고    scopus 로고
    • An artificial neural network improves prediction of observed survival in patients with laryngeal squamous carcinoma
    • Jones AS, Taktak AG, Helliwell TR, Fenton JE, Birchall MA, Husband DJ, et al. An artificial neural network improves prediction of observed survival in patients with laryngeal squamous carcinoma. Eur Arch Otorhinolaryngol. 2006;263(6):541-7.
    • (2006) Eur Arch Otorhinolaryngol , vol.263 , Issue.6 , pp. 541-547
    • Jones, A.S.1    Taktak, A.G.2    Helliwell, T.R.3    Fenton, J.E.4    Birchall, M.A.5    Husband, D.J.6
  • 17
    • 49649109231 scopus 로고    scopus 로고
    • Comparison of proportional hazard model and neural network models in a real data set of intensive care unit patients
    • Suka M, Oeda S, Ichimura T, Yoshida K, Takezawa J. Comparison of proportional hazard model and neural network models in a real data set of intensive care unit patients. Stud Health Technol Inform. 2004;107(Pt 1):741-5.
    • (2004) Stud Health Technol Inform , vol.107 , Issue.PART 1 , pp. 741-745
    • Suka, M.1    Oeda, S.2    Ichimura, T.3    Yoshida, K.4    Takezawa, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.