-
1
-
-
0031772117
-
Application of neural networks in medicine - a review
-
Papik K, Molnar B, Schaefer R, Dombovari Z, Tulassay Z, Feher J. Application of neural networks in medicine - a review. Med Sci Monit. 1998;4(3):538-46.
-
(1998)
Med Sci Monit
, vol.4
, Issue.3
, pp. 538-546
-
-
Papik, K.1
Molnar, B.2
Schaefer, R.3
Dombovari, Z.4
Tulassay, Z.5
Feher, J.6
-
2
-
-
0027529453
-
Artificial neural networks for predicting failure to survive following in-hospital cardiopulmonary resuscitation
-
Ebell MH. Artificial neural networks for predicting failure to survive following in-hospital cardiopulmonary resuscitation. J Fam Pract. 1993;36(3):297-303.
-
(1993)
J Fam Pract
, vol.36
, Issue.3
, pp. 297-303
-
-
Ebell, M.H.1
-
3
-
-
0026737665
-
Prediction criteria for successful weaning from respiratory support: Statistical and connectionist analyses
-
Ashutosh K, Lee H, Mohan CK, Ranka S, Mehrotra K, Alexander C. Prediction criteria for successful weaning from respiratory support: statistical and connectionist analyses. Crit Care Med. 1992;20(9):1295-301.
-
(1992)
Crit Care Med
, vol.20
, Issue.9
, pp. 1295-1301
-
-
Ashutosh, K.1
Lee, H.2
Mohan, C.K.3
Ranka, S.4
Mehrotra, K.5
Alexander, C.6
-
4
-
-
0028044828
-
Artificial neural networks for cancer research: Outcome prediction
-
Burke HB. Artificial neural networks for cancer research: outcome prediction. Semin Surg Oncol. 1994;10(1):73-9.
-
(1994)
Semin Surg Oncol
, vol.10
, Issue.1
, pp. 73-79
-
-
Burke, H.B.1
-
5
-
-
0026778445
-
A demonstration that breast cancer recurrence can be predicted by neural network analysis
-
Ravdin PM, Clark GM, Hilsenbeck SG, Owens MA, Vendely P, Pandian MR, et al. A demonstration that breast cancer recurrence can be predicted by neural network analysis. Breast Cancer Res Treat. 1992;21(1):47-53.
-
(1992)
Breast Cancer Res. Treat
, vol.21
, Issue.1
, pp. 47-53
-
-
Ravdin, P.M.1
Clark, G.M.2
Hilsenbeck, S.G.3
Owens, M.A.4
Vendely, P.5
Pandian, M.R.6
-
6
-
-
0028261647
-
Predicting outcomes after liver transplantation. A connectionist approach
-
Doyle HR, Dvorchik I, Mitchell S, Marino IR, Ebert FH, McMichael J, et al. Predicting outcomes after liver transplantation. A connectionist approach. Ann Surg. 1994;219(4):408-15.
-
(1994)
Ann Surg
, vol.219
, Issue.4
, pp. 408-415
-
-
Doyle, H.R.1
Dvorchik, I.2
Mitchell, S.3
Marino, I.R.4
Ebert, F.H.5
McMichael, J.6
-
7
-
-
0025934806
-
Use of an artificial neural network for the diagnosis of myocardial infarction
-
Baxt WG. Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med. 1991;115(11):843-8.
-
(1991)
Ann Intern Med
, vol.115
, Issue.11
, pp. 843-848
-
-
Baxt, W.G.1
-
8
-
-
0026438282
-
Analysis of the clinical variables driving decision in an artificial neural network trained to identify the presence of myocardial infarction
-
Baxt WG. Analysis of the clinical variables driving decision in an artificial neural network trained to identify the presence of myocardial infarction. Ann Emerg Med. 1992;21(12):1439-44.
-
(1992)
Ann Emerg Med
, vol.21
, Issue.12
, pp. 1439-1444
-
-
Baxt, W.G.1
-
9
-
-
0026794564
-
A practical application of neural network analysis for predicting outcome of individual breast cancer patients
-
Ravdin PM, Clark GM. A practical application of neural network analysis for predicting outcome of individual breast cancer patients. Breast Cancer Res Treat. 1992;22(3):285-93.
-
(1992)
Breast Cancer Res Treat
, vol.22
, Issue.3
, pp. 285-293
-
-
Ravdin, P.M.1
Clark, G.M.2
-
10
-
-
0030333384
-
Sequential use of neural networks for survival prediction in AIDS
-
Ohno-Machado L. Sequential use of neural networks for survival prediction in AIDS. Proc AMIA Annu Fall Symp. 1996; p. 170-4
-
(1996)
Proc AMIA Annu Fall Symp
, pp. 170-174
-
-
Ohno-Machado, L.1
-
12
-
-
1442350707
-
Non-linear survival analysis using neural networks
-
Ripley RM, Harris AL, Tarassenko L. Non-linear survival analysis using neural networks. Stat Med. 2004;23(5):825-42.
-
(2004)
Stat Med
, vol.23
, Issue.5
, pp. 825-842
-
-
Ripley, R.M.1
Harris, A.L.2
Tarassenko, L.3
-
13
-
-
53749101495
-
Assessment of gastric cancer survival: Using an artificial hierarchical neural network
-
Amiri Z, Mohammad K, Mahmoudi M, Zeraati H, Fotouhi A. Assessment of gastric cancer survival: using an artificial hierarchical neural network. Pak J Biol Sci. 2008;11(8):1076-84.
-
(2008)
Pak J Biol Sci
, vol.11
, Issue.8
, pp. 1076-1084
-
-
Amiri, Z.1
Mohammad, K.2
Mahmoudi, M.3
Zeraati, H.4
Fotouhi, A.5
-
14
-
-
24744433133
-
Postoperative life expectancy in gastric cancer patients and its associated factors
-
Zeraati H, Mahmoudi M, Kazemnejad A, Mohammed K. Postoperative life expectancy in gastric cancer patients and its associated factors. Saudi Med J. 2005;26(8):1203-7.
-
(2005)
Saudi Med J
, vol.26
, Issue.8
, pp. 1203-1207
-
-
Zeraati, H.1
Mahmoudi, M.2
Kazemnejad, A.3
Mohammed, K.4
-
15
-
-
0142216643
-
Prognosis in node-negative primary breast cancer: A neural network analysis of risk profiles using routinely assessed factors
-
Biganzoli E, Boracchi P, Coradini D, Grazia Daidone M, Marubini E. Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors. Ann Oncol. 2003;14(10):1484-93.
-
(2003)
Ann Oncol
, vol.14
, Issue.10
, pp. 1484-1493
-
-
Biganzoli, E.1
Boracchi, P.2
Coradini, D.3
Grazia, D.M.4
Marubini, E.5
-
16
-
-
33745108811
-
An artificial neural network improves prediction of observed survival in patients with laryngeal squamous carcinoma
-
Jones AS, Taktak AG, Helliwell TR, Fenton JE, Birchall MA, Husband DJ, et al. An artificial neural network improves prediction of observed survival in patients with laryngeal squamous carcinoma. Eur Arch Otorhinolaryngol. 2006;263(6):541-7.
-
(2006)
Eur Arch Otorhinolaryngol
, vol.263
, Issue.6
, pp. 541-547
-
-
Jones, A.S.1
Taktak, A.G.2
Helliwell, T.R.3
Fenton, J.E.4
Birchall, M.A.5
Husband, D.J.6
-
17
-
-
49649109231
-
Comparison of proportional hazard model and neural network models in a real data set of intensive care unit patients
-
Suka M, Oeda S, Ichimura T, Yoshida K, Takezawa J. Comparison of proportional hazard model and neural network models in a real data set of intensive care unit patients. Stud Health Technol Inform. 2004;107(Pt 1):741-5.
-
(2004)
Stud Health Technol Inform
, vol.107
, Issue.PART 1
, pp. 741-745
-
-
Suka, M.1
Oeda, S.2
Ichimura, T.3
Yoshida, K.4
Takezawa, J.5
|