-
1
-
-
0000241853
-
Deterministic nonperiodic flow
-
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
-
Lorenz E. N., Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 1963 20 2 130 1341 10.1175/1520-0469(1963)020<0130:DNF>2. 0.CO;2
-
(1963)
Journal of the Atmospheric Sciences
, vol.20
, Issue.2
, pp. 130-1341
-
-
Lorenz, E.N.1
-
3
-
-
0004032633
-
-
New York, NY, USA Springer Applied Mathematical Sciences 681294 ZBL0504.58001
-
Sparrow C., The Lorenz equations: bifurcations, chaos, and strange attractors 1982 41 New York, NY, USA Springer Applied Mathematical Sciences 681294 ZBL0504.58001
-
(1982)
The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors
, vol.41
-
-
Sparrow, C.1
-
4
-
-
0024136578
-
Chaos in deterministic systems: Strange attractors, turbulence, and applications in chemical engineering
-
2-s2.0-0024136578 10.1016/0009-2509(88)85029-2
-
Doherty M. F., Ottino J. M., Chaos in deterministic systems: strange attractors, turbulence, and applications in chemical engineering. Chemical Engineering Science 1988 43 2 139 183 2-s2.0-0024136578 10.1016/0009-2509(88) 85029-2
-
(1988)
Chemical Engineering Science
, vol.43
, Issue.2
, pp. 139-183
-
-
Doherty, M.F.1
Ottino, J.M.2
-
5
-
-
0003780074
-
-
New York, NY, USA Springer Textbooks in Mathematical Sciences 10.1007/978-3-642-59281-2 1418166
-
Alligood K. T., Sauer T. D., Yorke J. A., Chaos 1997 New York, NY, USA Springer Textbooks in Mathematical Sciences 10.1007/978-3-642-59281-2 1418166
-
(1997)
Chaos
-
-
Alligood, K.T.1
Sauer, T.D.2
Yorke, J.A.3
-
6
-
-
33751555569
-
Some simple chaotic flows
-
10.1103/PhysRevE.50.R647 1381868
-
Sprott J. C., Some simple chaotic flows. Physical Review E 1994 50 2 R647 R650 10.1103/PhysRevE.50.R647 1381868
-
(1994)
Physical Review e
, vol.50
, Issue.2
-
-
Sprott, J.C.1
-
8
-
-
0000863462
-
Bilinear systems and chaos
-
1303292 ZBL0823.93026
-
Vaněček A., Čelikovský S., Bilinear systems and chaos. Kybernetika 1994 30 4 403 424 1303292 ZBL0823.93026
-
(1994)
Kybernetika
, vol.30
, Issue.4
, pp. 403-424
-
-
Vaněček, A.1
Čelikovský, S.2
-
11
-
-
20444502538
-
On the generalized Lorenz canonical form
-
DOI 10.1016/j.chaos.2005.02.040, PII S0960077905001931
-
Čelikovský S., Chen G., On the generalized Lorenz canonical form. Chaos, Solitons and Fractals 2005 26 5 1271 1276 10.1016/j.chaos.2005.02. 040 2149315 ZBL1100.37016 (Pubitemid 40821855)
-
(2005)
Chaos, Solitons and Fractals
, vol.26
, Issue.5
, pp. 1271-1276
-
-
Celikovsky, S.1
Chen, G.2
-
12
-
-
33845517878
-
A unified Lorenz-type system and its canonical form
-
DOI 10.1142/S0218127406016501
-
Yang Q., Chen G., Zhou T., A unified Lorenz-type system and its canonical form. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 2006 16 10 2855 2871 10.1142/S0218127406016501 2282907 ZBL1185.37088 (Pubitemid 44924965)
-
(2006)
International Journal of Bifurcation and Chaos
, vol.16
, Issue.10
, pp. 2855-2871
-
-
Yang, Q.1
Chen, G.2
Zhou, T.3
-
13
-
-
39449106074
-
Chaotic attractors of the conjugate Lorenz-type system
-
DOI 10.1142/S0218127407019792, PII S0218127407019792
-
Yang Q., Chen G., Huang K., Chaotic attractors of the conjugate Lorenz-type system. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 2007 17 11 3929 3949 10.1142/S0218127407019792 2384392 ZBL1149.37308 (Pubitemid 351269037)
-
(2007)
International Journal of Bifurcation and Chaos
, vol.17
, Issue.11
, pp. 3929-3949
-
-
Yang, Q.1
Chen, G.2
Huang, K.3
-
14
-
-
62549102915
-
Stability and Hopf bifurcation analysis of a new system
-
10.1016/j.chaos.2007.01.107 2518911 ZBL1197.34096
-
Huang K., Yang Q., Stability and Hopf bifurcation analysis of a new system. Chaos, Solitons and Fractals 2009 39 2 567 578 10.1016/j.chaos.2007.01. 107 2518911 ZBL1197.34096
-
(2009)
Chaos, Solitons and Fractals
, vol.39
, Issue.2
, pp. 567-578
-
-
Huang, K.1
Yang, Q.2
-
15
-
-
77950865742
-
Coexistence of anti-phase and complete synchronization in the generalized Lorenz system
-
10.1016/j.cnsns.2009.11.020 2610647 ZBL1222.93126
-
Zhang Q., Lü J. H. L., Chen S. H., Coexistence of anti-phase and complete synchronization in the generalized Lorenz system. Communications in Nonlinear Science and Numerical Simulation 2010 15 10 3067 3072 10.1016/j.cnsns.2009.11.020 2610647 ZBL1222.93126
-
(2010)
Communications in Nonlinear Science and Numerical Simulation
, vol.15
, Issue.10
, pp. 3067-3072
-
-
Zhang, Q.1
Lü, J.H.L.2
Chen, S.H.3
-
16
-
-
84863987468
-
The alternating between complete synchronization and hybrid synchronization of hyperchaotic Lorenz system with time delay
-
10.1007/s11071-012-0339-9
-
Shi X., Wang Z., The alternating between complete synchronization and hybrid synchronization of hyperchaotic Lorenz system with time delay. Nonlinear Dynamics 2012 69 3 1177 1190 10.1007/s11071-012-0339-9
-
(2012)
Nonlinear Dynamics
, vol.69
, Issue.3
, pp. 1177-1190
-
-
Shi, X.1
Wang, Z.2
-
17
-
-
84859040429
-
Intermingled basins in coupled Lorenz systems
-
036207 10.1103/PhysRevE.85.036207
-
Camargo S., Viana L. R. L., Anteneodo C., Intermingled basins in coupled Lorenz systems. Physical Review E 2012 85 3 10 036207 10.1103/PhysRevE.85.036207
-
(2012)
Physical Review e
, vol.85
, Issue.3
, pp. 10
-
-
Camargo, S.1
Viana, L.R.L.2
Anteneodo, C.3
-
18
-
-
84864411077
-
Model-free control of Lorenz chaos using an approximate optimal control strategy
-
10.1016/j.cnsns.2012.05.024
-
Li S., Li Y., Liu B., Murray T., Model-free control of Lorenz chaos using an approximate optimal control strategy. Communications in Nonlinear Science and Numerical Simulation 2012 17 12 4891 4900 10.1016/j.cnsns.2012.05.024
-
(2012)
Communications in Nonlinear Science and Numerical Simulation
, vol.17
, Issue.12
, pp. 4891-4900
-
-
Li, S.1
Li, Y.2
Liu, B.3
Murray, T.4
-
21
-
-
0041384356
-
Chaotic dynamics of the fractional order Lorenz system
-
03410 10.1103/PhysRevLett.91.034101
-
Grigorenko I., Grigorenko E., Chaotic dynamics of the fractional order Lorenz system. Physical Review Letters 2003 91 3 4 03410 10.1103/PhysRevLett.91. 034101
-
(2003)
Physical Review Letters
, vol.91
, Issue.3
, pp. 4
-
-
Grigorenko, I.1
Grigorenko, E.2
-
22
-
-
1842832060
-
Chaos in Chen's system with a fractional order
-
10.1016/j.chaos.2004.02.013 2060878 ZBL1060.37026
-
Li C. P., Peng G. J., Chaos in Chen's system with a fractional order. Chaos, Solitons and Fractals 2004 22 2 443 450 10.1016/j.chaos.2004.02.013 2060878 ZBL1060.37026
-
(2004)
Chaos, Solitons and Fractals
, vol.22
, Issue.2
, pp. 443-450
-
-
Li, C.P.1
Peng, G.J.2
-
23
-
-
33749563875
-
On chaos synchronization of fractional differential equations
-
DOI 10.1016/j.chaos.2005.11.062, PII S0960077905011069
-
Yan J. P., Li C. P., On chaos synchronization of fractional differential equations. Chaos, Solitons and Fractals 2007 32 2 725 735 10.1016/j.chaos.2005. 11.062 2280115 ZBL1132.37308 (Pubitemid 44537762)
-
(2007)
Chaos, Solitons and Fractals
, vol.32
, Issue.2
, pp. 725-735
-
-
Yan, J.1
Li, C.2
-
25
-
-
67649861441
-
Dynamic analysis of a fractional-order Lorenz chaotic system
-
10.1016/j.chaos.2009.03.016 2554825 ZBL1198.37063
-
Yu Y., Li H. X., Wang S., Yu J., Dynamic analysis of a fractional-order Lorenz chaotic system. Chaos, Solitons and Fractals 2009 42 2 1181 1189 10.1016/j.chaos.2009.03.016 2554825 ZBL1198.37063
-
(2009)
Chaos, Solitons and Fractals
, vol.42
, Issue.2
, pp. 1181-1189
-
-
Yu, Y.1
Li, H.X.2
Wang, S.3
Yu, J.4
-
26
-
-
77955018368
-
Bifurcations of fractional-order diffusionless lorenz system
-
2-s2.0-77955018368
-
Sun K., Sprott J. C., Bifurcations of fractional-order diffusionless lorenz system. Electronic Journal of Theoretical Physics 2009 6 22 123 134 2-s2.0-77955018368
-
(2009)
Electronic Journal of Theoretical Physics
, vol.6
, Issue.22
, pp. 123-134
-
-
Sun, K.1
Sprott, J.C.2
-
27
-
-
84860168517
-
Synchronization of fractional order chaotic systems using active control method
-
10.1016/j.chaos.2012.02.004
-
Agrawal S. K., Srivastava M., Das S., Synchronization of fractional order chaotic systems using active control method. Chaos, Solitons and Fractals 2012 45 6 737 752 10.1016/j.chaos.2012.02.004
-
(2012)
Chaos, Solitons and Fractals
, vol.45
, Issue.6
, pp. 737-752
-
-
Agrawal, S.K.1
Srivastava, M.2
Das, S.3
-
28
-
-
84861208531
-
Chaos in diffusionless Lorenz system with a fractional order and its control
-
Xu Y., Gu R., Zhang H., Li D., Chaos in diffusionless Lorenz system with a fractional order and its control. International Journal of Bifurcation and Chaos 2012 22 4 1 8
-
(2012)
International Journal of Bifurcation and Chaos
, vol.22
, Issue.4
, pp. 1-8
-
-
Xu, Y.1
Gu, R.2
Zhang, H.3
Li, D.4
-
29
-
-
84863698688
-
Control and synchronization of the fractional-order Lorenz chaotic system via fractionalorder derivative
-
214169 10.1155/2012/214169
-
Zhou P., Ding R., Control and synchronization of the fractional-order Lorenz chaotic system via fractionalorder derivative. Mathematical Problems in Engineering 2012 2012 14 214169 10.1155/2012/214169
-
(2012)
Mathematical Problems in Engineering
, vol.2012
, pp. 14
-
-
Zhou, P.1
Ding, R.2
-
30
-
-
84864407494
-
Parameter estimation and topology identification of uncertain fractional order complex networks
-
10.1016/j.cnsns.2012.05.005
-
Si G., Sun Z., Zhang H., Zhang Y., Parameter estimation and topology identification of uncertain fractional order complex networks. Communications in Nonlinear Science and Numerical Simulation 2012 17 12 5158 5171 10.1016/j.cnsns.2012.05.005
-
(2012)
Communications in Nonlinear Science and Numerical Simulation
, vol.17
, Issue.12
, pp. 5158-5171
-
-
Si, G.1
Sun, Z.2
Zhang, H.3
Zhang, Y.4
-
31
-
-
0000072204
-
The complex Lorenz equations
-
10.1016/0167-2789(82)90057-4 653770
-
Fowler A. C., McGuinness M. J., Gibbon J. D., The complex Lorenz equations. Physica D 1981/82 4 2 139 163 10.1016/0167-2789(82)90057-4 653770
-
(1981)
Physica D
, vol.4
, Issue.2
, pp. 139-163
-
-
Fowler, A.C.1
McGuinness, M.J.2
Gibbon, J.D.3
-
32
-
-
0009809866
-
The real and complex Lorenz equations and their relevance to physical systems
-
10.1016/0167-2789(83)90123-9 719049 ZBL1194.76087
-
Fowler A. C., Gibbon J. D., McGuinness M. J., The real and complex Lorenz equations and their relevance to physical systems. Physica D 1983 7 1-3 126 134 10.1016/0167-2789(83)90123-9 719049 ZBL1194.76087
-
(1983)
Physica D
, vol.7
, Issue.1-3
, pp. 126-134
-
-
Fowler, A.C.1
Gibbon, J.D.2
McGuinness, M.J.3
-
33
-
-
0013044957
-
Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations
-
2-s2.0-0013044957 10.1103/PhysRevA.41.3826
-
Ning C. Z., Haken H., Detuned lasers and the complex Lorenz equations: subcritical and supercritical Hopf bifurcations. Physical Review A 1990 41 7 3826 3837 2-s2.0-0013044957 10.1103/PhysRevA.41.3826
-
(1990)
Physical Review A
, vol.41
, Issue.7
, pp. 3826-3837
-
-
Ning, C.Z.1
Haken, H.2
-
34
-
-
43049148158
-
Symmetry breaking and bifurcations in complex Lorenz model
-
1817193 ZBL1079.37504
-
Kiselev A. D., Symmetry breaking and bifurcations in complex Lorenz model. Journal of Physical Studies 1998 2 1 30 37 1817193 ZBL1079.37504
-
(1998)
Journal of Physical Studies
, vol.2
, Issue.1
, pp. 30-37
-
-
Kiselev, A.D.1
-
35
-
-
0345573180
-
Global stability properties of the complex Lorenz model
-
PII S0167278996001297
-
Rauh A., Hannibal L., Abraham N. B., Global stability properties of the complex Lorenz model. Physica D 1996 99 1 45 58 10.1016/S0167-2789(96)00129-7 1420806 ZBL0887.34048 (Pubitemid 126687486)
-
(1996)
Physica D: Nonlinear Phenomena
, vol.99
, Issue.1
, pp. 45-58
-
-
Rauh, A.1
Hannibal, L.2
Abraham, N.B.3
-
36
-
-
33947100737
-
On asymptotic properties of some complex Lorenz-like systems
-
2190035 ZBL1105.34032
-
Panchev S., Vitanov N. K., On asymptotic properties of some complex Lorenz-like systems. Journal of the Calcutta Mathematical Society 2005 1 3-4 121 130 2190035 ZBL1105.34032
-
(2005)
Journal of the Calcutta Mathematical Society
, vol.1
, Issue.3-4
, pp. 121-130
-
-
Panchev, S.1
Vitanov, N.K.2
-
37
-
-
34249024925
-
Basic properties and chaotic synchronization of complex Lorenz system
-
10.1142/S0129183107010425 2325482 ZBL1115.37035
-
Mahmoud G. M., Al-Kashif M. A., Aly S. A., Basic properties and chaotic synchronization of complex Lorenz system. International Journal of Modern Physics C 2007 18 2 253 265 10.1142/S0129183107010425 2325482 ZBL1115.37035
-
(2007)
International Journal of Modern Physics C
, vol.18
, Issue.2
, pp. 253-265
-
-
Mahmoud, G.M.1
Al-Kashif, M.A.2
Aly, S.A.3
-
38
-
-
56749091385
-
Analysis of hyperchaotic complex Lorenz systems
-
2-s2.0-56749091385 10.1142/S0129183108013151 ZBL1170.37311
-
Mahmoud G. M., Ahmed M. E., Mahmoud E. E., Analysis of hyperchaotic complex Lorenz systems. International Journal of Modern Physics C 2008 19 10 1477 1494 2-s2.0-56749091385 10.1142/S0129183108013151 ZBL1170.37311
-
(2008)
International Journal of Modern Physics C
, vol.19
, Issue.10
, pp. 1477-1494
-
-
Mahmoud, G.M.1
Ahmed, M.E.2
Mahmoud, E.E.3
-
40
-
-
78049473650
-
Complete synchronization of chaotic complex nonlinear systems with uncertain parameters
-
10.1007/s11071-010-9770-y ZBL1215.93114
-
Mahmoud G. M., Mahmoud E. E., Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dynamics 2010 62 4 875 882 10.1007/s11071-010-9770-y ZBL1215.93114
-
(2010)
Nonlinear Dynamics
, vol.62
, Issue.4
, pp. 875-882
-
-
Mahmoud, G.M.1
Mahmoud, E.E.2
-
41
-
-
84863561489
-
Distributed robust control of linear multi-agent systems with parameter uncertainties
-
10.1080/00207179.2012.674644 2943688
-
Li Z., Duan Z., Xie L., Liu X., Distributed robust control of linear multi-agent systems with parameter uncertainties. International Journal of Control 2012 85 8 1039 1050 10.1080/00207179.2012.674644 2943688
-
(2012)
International Journal of Control
, vol.85
, Issue.8
, pp. 1039-1050
-
-
Li, Z.1
Duan, Z.2
Xie, L.3
Liu, X.4
-
42
-
-
84857120377
-
Dynamics and synchronization of new hyperchaotic complex Lorenz system
-
10.1016/j.mcm.2011.11.053 2899141
-
Mahmoud E. E., Dynamics and synchronization of new hyperchaotic complex Lorenz system. Mathematical and Computer Modelling 2012 55 7-8 1951 1962 10.1016/j.mcm.2011.11.053 2899141
-
(2012)
Mathematical and Computer Modelling
, vol.55
, Issue.7-8
, pp. 1951-1962
-
-
Mahmoud, E.E.1
-
43
-
-
84866172398
-
Dynamic properties of the fractional-order logistic equation of complex variables
-
251715 10.1155/2012/251715 ZBL1246.37074
-
El-Sayed A. M. A., Ahmed E., El-Saka H. A. A., Dynamic properties of the fractional-order logistic equation of complex variables. Abstract and Applied Analysis 2012 2012 12 251715 10.1155/2012/251715 ZBL1246.37074
-
(2012)
Abstract and Applied Analysis
, vol.2012
, pp. 12
-
-
El-Sayed, A.M.A.1
Ahmed, E.2
El-Saka, H.A.A.3
-
44
-
-
0002020829
-
Analogy between higher instabilities in fluids and lasers
-
10.1016/0375-9601(75)90353-9
-
Haken H., Analogy between higher instabilities in fluids and lasers. Physics Letters A 1975 53 1 77 88 10.1016/0375-9601(75)90353-9
-
(1975)
Physics Letters A
, vol.53
, Issue.1
, pp. 77-88
-
-
Haken, H.1
-
45
-
-
78649692474
-
Analytical study on the fractional anomalous diffusion in a half-plane
-
495206 10.1088/1751-8113/43/49/495206 2740367 ZBL1205.82108
-
Li X., Chen W., Analytical study on the fractional anomalous diffusion in a half-plane. Journal of Physics A 2010 43 49 11 495206 10.1088/1751-8113/43/ 49/495206 2740367 ZBL1205.82108
-
(2010)
Journal of Physics A
, vol.43
, Issue.49
, pp. 11
-
-
Li, X.1
Chen, W.2
-
46
-
-
84866365902
-
A survey on numerical evaluation of Lvy stable distributions and a new MATLAB toolbox
-
10.1016/j.sigpro.2012.07.035
-
Liang Y. J., Chen W., A survey on numerical evaluation of Lvy stable distributions and a new MATLAB toolbox. Signal Processing 2013 93 1 242 251 10.1016/j.sigpro.2012.07.035
-
(2013)
Signal Processing
, vol.93
, Issue.1
, pp. 242-251
-
-
Liang, Y.J.1
Chen, W.2
-
47
-
-
80053068101
-
Modal analysis of fractional derivative damping model of frequency-dependent viscoelastic soft matter
-
Hu S., Chen W., Gou X., Modal analysis of fractional derivative damping model of frequency-dependent viscoelastic soft matter. Advances in Vibration Engineering 2011 10 3 187 196
-
(2011)
Advances in Vibration Engineering
, vol.10
, Issue.3
, pp. 187-196
-
-
Hu, S.1
Chen, W.2
Gou, X.3
-
48
-
-
0003797958
-
-
London, UK Academic Press Mathematics in Science and Engineering 1658022
-
Podlubny I., Fractional Differential Equations 1999 198 London, UK Academic Press Mathematics in Science and Engineering 1658022
-
(1999)
Fractional Differential Equations
, vol.198
-
-
Podlubny, I.1
-
51
-
-
84866493921
-
Stability and stabilization of a class of nonlinear fractional order system with Caputo derivative
-
10.1109/TCSII.2012.2206936
-
Chen L., Chai Y., Wu R., Yang J., Stability and stabilization of a class of nonlinear fractional order system with Caputo derivative. IEEE Transaction on Circuits and Systems 2012 59 9 602 606 10.1109/TCSII.2012.2206936
-
(2012)
IEEE Transaction on Circuits and Systems
, vol.59
, Issue.9
, pp. 602-606
-
-
Chen, L.1
Chai, Y.2
Wu, R.3
Yang, J.4
-
52
-
-
0037081673
-
Analysis of fractional differential equations
-
10.1006/jmaa.2000.7194 1876137 ZBL1014.34003
-
Diethelm K., Ford N. J., Analysis of fractional differential equations. Journal of Mathematical Analysis and Applications 2002 265 2 229 248 10.1006/jmaa.2000.7194 1876137 ZBL1014.34003
-
(2002)
Journal of Mathematical Analysis and Applications
, vol.265
, Issue.2
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.J.2
-
53
-
-
0002731965
-
Stability result on fractional differential equations with applications to control processing
-
Matignon D., Stability result on fractional differential equations with applications to control processing. 2 Proceedings of the IMACS-SMC 96 1996 963 968
-
(1996)
Proceedings of the IMACS-SMC 96
, vol.2
, pp. 963-968
-
-
Matignon, D.1
|