메뉴 건너뛰기




Volumn 233, Issue , 2013, Pages 25-35

A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm

Author keywords

Fuzzy c means; Imputation; Missing data; Missing values; Support vector regression

Indexed keywords

FUZZY C MEAN; IMPUTATION; MISSING DATA; MISSING VALUES; SUPPORT VECTOR REGRESSION (SVR);

EID: 84875231751     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2013.01.021     Document Type: Article
Times cited : (282)

References (49)
  • 1
    • 33646120792 scopus 로고    scopus 로고
    • The use of genetic algorithms and neural networks to approximate missing data in database
    • M. Abdella, and T. Marwala The use of genetic algorithms and neural networks to approximate missing data in database Comput. Inform. 24 2005 577 589
    • (2005) Comput. Inform. , vol.24 , pp. 577-589
    • Abdella, M.1    Marwala, T.2
  • 2
    • 0036489378 scopus 로고    scopus 로고
    • A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
    • M.N. Ahmed, S.M. Yamany, N. Mohamed, A.A. Farag, and T. Moriarty A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data IEEE Trans. Med. Imaging 21 2002 193 199
    • (2002) IEEE Trans. Med. Imaging , vol.21 , pp. 193-199
    • Ahmed, M.N.1    Yamany, S.M.2    Mohamed, N.3    Farag, A.A.4    Moriarty, T.5
  • 3
    • 84862329664 scopus 로고    scopus 로고
    • A novel hybrid approach to estimating missing values in databases using k-nearest neighbors and neural networks
    • I.B. Aydilek, and A. Arslan A novel hybrid approach to estimating missing values in databases using k-nearest neighbors and neural networks Int. J. Innov. Comput. I 8 2012 4705 4717
    • (2012) Int. J. Innov. Comput. , vol.1 , Issue.8 , pp. 4705-4717
    • Aydilek, I.B.1    Arslan, A.2
  • 5
    • 84857652807 scopus 로고    scopus 로고
    • On the use of cross-validation for time series predictor evaluation
    • C. Bergmeir, and J.M. Benitez On the use of cross-validation for time series predictor evaluation Inform. Sci. 191 2012 192 213
    • (2012) Inform. Sci. , vol.191 , pp. 192-213
    • Bergmeir, C.1    Benitez, J.M.2
  • 6
    • 84863387880 scopus 로고    scopus 로고
    • Irvine, CA, U. of California, Department of Information and Computer Science, 1998 (accessed 19.10.2012)
    • C.L. Blake, C.J. Merz, UCI Repository of Machine Learning Databases < http://www.ics.uci.edu/~mlearn/MLRepository.html >, Irvine, CA, U. of California, Department of Information and Computer Science, 1998 (accessed 19.10.2012).
    • UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 7
    • 79953290682 scopus 로고    scopus 로고
    • Positive approximation and converse approximation in interval-valued fuzzy rough sets
    • Y. Cheng, D.Q. Miao, and Q.R. Feng Positive approximation and converse approximation in interval-valued fuzzy rough sets Inform. Sci. 181 2011 2086 2110
    • (2011) Inform. Sci. , vol.181 , pp. 2086-2110
    • Cheng, Y.1    Miao, D.Q.2    Feng, Q.R.3
  • 8
    • 75149113079 scopus 로고    scopus 로고
    • Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm
    • S. Das, and S. Sil Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm Inform. Sci. 180 2010 1237 1256
    • (2010) Inform. Sci. , vol.180 , pp. 1237-1256
    • Das, S.1    Sil, S.2
  • 9
    • 9444246450 scopus 로고    scopus 로고
    • Towards missing data imputation: A study of fuzzy K-means clustering method
    • D. Li, J. Deogun, W. Spaulding, and B. Shuart Towards missing data imputation: a study of fuzzy K-means clustering method Rough Sets Curr. Trends Comput. 3066 2004 573 579
    • (2004) Rough Sets Curr. Trends Comput. , vol.3066 , pp. 573-579
    • Li, D.1    Deogun, J.2    Spaulding, W.3    Shuart, B.4
  • 10
    • 0015644825 scopus 로고
    • A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
    • 10.1080/01969727308546046
    • J.C. Dunn A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters J. Cybernet. 3 1973 32 57 10.1080/01969727308546046
    • (1973) J. Cybernet. , vol.3 , pp. 32-57
    • Dunn, J.C.1
  • 14
    • 77957655488 scopus 로고    scopus 로고
    • Interval multiplicative transitivity for consistency, missing values and priority weights of interval fuzzy preference relations
    • S. Genc, F.E. Boran, D. Akay, and Z.S. Xu Interval multiplicative transitivity for consistency, missing values and priority weights of interval fuzzy preference relations Inform. Sci. 180 2010 4877 4891
    • (2010) Inform. Sci. , vol.180 , pp. 4877-4891
    • Genc, S.1    Boran, F.E.2    Akay, D.3    Xu, Z.S.4
  • 15
    • 33644588724 scopus 로고    scopus 로고
    • Future rainfall scenario over Orissa with GCM projections by statistical downscaling
    • S. Ghosh, and P.P. Mujumdar Future rainfall scenario over Orissa with GCM projections by statistical downscaling Curr. Sci. India 90 2006 396 404
    • (2006) Curr. Sci. India , vol.90 , pp. 396-404
    • Ghosh, S.1    Mujumdar, P.P.2
  • 20
    • 0036132613 scopus 로고    scopus 로고
    • Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm
    • R.J. Hathaway, and J.C. Bezdek Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm Pattern Recogn. Lett. 23 2002 151 160
    • (2002) Pattern Recogn. Lett. , vol.23 , pp. 151-160
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 21
    • 70350680657 scopus 로고    scopus 로고
    • Interval regression analysis with soft-margin reduced support vector machine
    • C.H. Huang, and H.Y. Kao Interval regression analysis with soft-margin reduced support vector machine Proc. Next-Gener. Appl. Intell. 5579 2009 826 835
    • (2009) Proc. Next-Gener. Appl. Intell. , vol.5579 , pp. 826-835
    • Huang, C.H.1    Kao, H.Y.2
  • 23
    • 78649930585 scopus 로고    scopus 로고
    • A fuzzy c-means clustering algorithm based on nearest-neighbor intervals for incomplete data
    • D. Li, H. Gu, and L.Y. Zhang A fuzzy c-means clustering algorithm based on nearest-neighbor intervals for incomplete data Expert Syst. Appl. 37 2010 6942 6947
    • (2010) Expert Syst. Appl. , vol.37 , pp. 6942-6947
    • Li, D.1    Gu, H.2    Zhang, L.Y.3
  • 24
    • 76349109464 scopus 로고    scopus 로고
    • Missing data imputation: A fuzzy K-means clustering algorithm over sliding window
    • Zaifei Liao, Xinjie Lu, Tian Yang, and Hongan Wang Missing data imputation: a fuzzy K-means clustering algorithm over sliding window Fuzzy Syst. Knowled. Discovery 14-16 2009 133 137
    • (2009) Fuzzy Syst. Knowled. Discovery , vol.14-16 , pp. 133-137
    • Liao, Z.1    Lu, X.2    Yang, T.3    Wang, H.4
  • 25
    • 17144402563 scopus 로고    scopus 로고
    • A hybrid neural network system for pattern classification tasks with missing features
    • C.P. Lim, J.H. Leong, and M.M. Kuan A hybrid neural network system for pattern classification tasks with missing features IEEE Trans. Pattern Anal. 27 2005 648 653
    • (2005) IEEE Trans. Pattern Anal. , vol.27 , pp. 648-653
    • Lim, C.P.1    Leong, J.H.2    Kuan, M.M.3
  • 27
    • 84875226574 scopus 로고    scopus 로고
    • State estimation with asynchronous multi-rate multi-smart sensors
    • M.S. Mahmoud, and M.F. Emzir State estimation with asynchronous multi-rate multi-smart sensors Inform. Sci. 196 2012 15 27
    • (2012) Inform. Sci. , vol.196 , pp. 15-27
    • Mahmoud, M.S.1    Emzir, M.F.2
  • 28
    • 76649118552 scopus 로고    scopus 로고
    • Computational Intelligence for Missing Data Imputation, Estimation and Management: Knowledge Optimization Techniques
    • Hershey PA
    • T. Marwala, Computational Intelligence for Missing Data Imputation, Estimation and Management: Knowledge Optimization Techniques, Information Science Reference, Hershey PA, 2009.
    • (2009) Information Science Reference
    • Marwala, T.1
  • 29
    • 33644880300 scopus 로고    scopus 로고
    • Fault classification in structures with incomplete measured data using autoassociative neural networks and genetic algorithm
    • T. Marwala, and S. Chakraverty Fault classification in structures with incomplete measured data using autoassociative neural networks and genetic algorithm Curr. Sci. India 90 2006 542 548
    • (2006) Curr. Sci. India , vol.90 , pp. 542-548
    • Marwala, T.1    Chakraverty, S.2
  • 30
    • 84861191080 scopus 로고    scopus 로고
    • Extended rough set-based attribute reduction in inconsistent incomplete decision systems
    • Z.Q. Meng, and Z.Z. Shi Extended rough set-based attribute reduction in inconsistent incomplete decision systems Inform. Sci. 204 2012 44 69
    • (2012) Inform. Sci. , vol.204 , pp. 44-69
    • Meng, Z.Q.1    Shi, Z.Z.2
  • 32
    • 37748999261 scopus 로고    scopus 로고
    • Missing data: A comparison of neural network and expectation maximization techniques
    • F.V. Nelwamondo, S. Mohamed, and T. Marwala Missing data: a comparison of neural network and expectation maximization techniques Curr. Sci. India 93 2007 1514 1521
    • (2007) Curr. Sci. India , vol.93 , pp. 1514-1521
    • Nelwamondo, F.V.1    Mohamed, S.2    Marwala, T.3
  • 33
    • 84876958285 scopus 로고    scopus 로고
    • A dynamic programming approach to missing data estimation using neural Networks
    • 10.1016/j.ins.2009.10.008
    • Fulufhelo V. Nelwamondo, Dan Golding, and Tshilidzi Marwala A dynamic programming approach to missing data estimation using neural Networks Inform. Sci. 2009 10.1016/j.ins.2009.10.008
    • (2009) Inform. Sci.
    • Nelwamondo, F.V.1    Golding, D.2    Marwala, T.3
  • 34
    • 79951578021 scopus 로고    scopus 로고
    • Missing data analysis with fuzzy C-Means: A study of its application in a psychological scenario
    • A.G. Di Nuovo Missing data analysis with fuzzy C-Means: a study of its application in a psychological scenario Expert Syst. Appl. 38 2011 6793 6797
    • (2011) Expert Syst. Appl. , vol.38 , pp. 6793-6797
    • Di Nuovo, A.G.1
  • 37
    • 71849095326 scopus 로고    scopus 로고
    • Topological solution of missing attribute values problem in incomplete information tables
    • A.S. Salama Topological solution of missing attribute values problem in incomplete information tables Inform. Sci. 180 2010 631 639
    • (2010) Inform. Sci. , vol.180 , pp. 631-639
    • Salama, A.S.1
  • 38
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • J.L. Schafer, and J.W. Graham Missing data: our view of the state of the art Psychol. Meth. 7 2 2002 147 177
    • (2002) Psychol. Meth. , vol.7 , Issue.2 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 39
    • 46649106930 scopus 로고    scopus 로고
    • Ameliorative missing value imputation for robust biological knowledge inference
    • M.S.B. Sehgal, I. Gondal, L.S. Dooley, and R. Coppel Ameliorative missing value imputation for robust biological knowledge inference J. Biomed. Inform. 41 2008 499 514
    • (2008) J. Biomed. Inform. , vol.41 , pp. 499-514
    • Sehgal, M.S.B.1    Gondal, I.2    Dooley, L.S.3    Coppel, R.4
  • 40
    • 70350580367 scopus 로고    scopus 로고
    • Detecting effectiveness of outliers and noisy data on fuzzy system using FCM
    • A. Shahi, R.B. Atan, and M.N. Sulaiman Detecting effectiveness of outliers and noisy data on fuzzy system using FCM Eur. J. Sci. Res. 36 4 2009 627 638
    • (2009) Eur. J. Sci. Res. , vol.36 , Issue.4 , pp. 627-638
    • Shahi, A.1    Atan, R.B.2    Sulaiman, M.N.3
  • 41
    • 77958082156 scopus 로고    scopus 로고
    • A case study on financial ratios via cross-graph quasi-bicliques
    • K. Sim, G.M. Liu, V. Gopalkrishnan, and J.Y. Li A case study on financial ratios via cross-graph quasi-bicliques Inform. Sci. 181 2011 201 216
    • (2011) Inform. Sci. , vol.181 , pp. 201-216
    • Sim, K.1    Liu, G.M.2    Gopalkrishnan, V.3    Li, J.Y.4
  • 42
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A.J. Smola, and B. Scholkopf A tutorial on support vector regression Stat. Comput. 14 2004 199 222
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 44
    • 1142291805 scopus 로고    scopus 로고
    • Different approaches to fuzzy clustering of incomplete datasets
    • H. Timm, C. Doring, and R. Kruse Different approaches to fuzzy clustering of incomplete datasets Int. J. Approx. Reason. 35 2004 239 249
    • (2004) Int. J. Approx. Reason. , vol.35 , pp. 239-249
    • Timm, H.1    Doring, C.2    Kruse, R.3
  • 45
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • V. Vapnik, S.E. Golowich, and A. Smola Support vector method for function approximation, regression estimation, and signal processing Adv. Neur. Inform. 9 1997 281 287
    • (1997) Adv. Neur. Inform. , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.E.2    Smola, A.3
  • 46
    • 79955941246 scopus 로고
    • Pattern-recognition with fuzzy objective function algorithms-Bezdek JC
    • 442-442
    • P.H. Wang Pattern-recognition with fuzzy objective function algorithms-Bezdek JC Siam. Rev. 25 1983 442-442
    • (1983) Siam. Rev. , vol.25
    • Wang, P.H.1
  • 47
    • 33645037239 scopus 로고    scopus 로고
    • Missing value estimation for DNA microarray gene expression data by support vector regression imputation and orthogonal coding scheme
    • X. Wang, A. Li, Z.H. Jiang, and H.Q. Feng Missing value estimation for DNA microarray gene expression data by support vector regression imputation and orthogonal coding scheme Bmc Bioinform. 7 2006
    • (2006) Bmc Bioinform. , vol.7
    • Wang, X.1    Li, A.2    Jiang, Z.H.3    Feng, H.Q.4
  • 48
    • 80052728753 scopus 로고    scopus 로고
    • The fuzzy learning vector quantization with allied fuzzy c-means clustering for clustering noisy data
    • Xiaohong Wu, Bin Wu c, Yong Deng a, and Jiewen Zhao b The fuzzy learning vector quantization with allied fuzzy c-means clustering for clustering noisy data J. Inform. Comput. Sci. 8 9 2011 1713 1719
    • (2011) J. Inform. Comput. Sci. , vol.8 , Issue.9 , pp. 1713-1719
    • Wu, X.1    Wu, C.B.2    Deng, A.Y.3    Zhao, B.J.4
  • 49
    • 79957601799 scopus 로고    scopus 로고
    • Topological properties of generalized approximation spaces
    • L.Y. Yang, and L.S. Xu Topological properties of generalized approximation spaces Inform. Sci. 181 2011 3570 3580
    • (2011) Inform. Sci. , vol.181 , pp. 3570-3580
    • Yang, L.Y.1    Xu, L.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.