메뉴 건너뛰기




Volumn 24, Issue 3, 2013, Pages 235-251

Comparative study to predict toxic modes of action of phenols from molecular structures

Author keywords

atom based quadratic indices; machine learning technique; mode of toxic action; phenol derivative; quantitative structure toxicity relationship

Indexed keywords

DISCRIMINANT ANALYSIS; LEARNING ALGORITHMS; NEAREST NEIGHBOR SEARCH; NEURAL NETWORKS; SUPPORT VECTOR MACHINES;

EID: 84875227923     PISSN: 1062936X     EISSN: 1029046X     Source Type: Journal    
DOI: 10.1080/1062936X.2013.766260     Document Type: Article
Times cited : (24)

References (56)
  • 1
    • 0035074882 scopus 로고    scopus 로고
    • Comparative QSAR: On the toxicology of the phenolic OH moiety
    • Garg, R., Kurup, A. and Hansch, C. 2001. Comparative QSAR: On the toxicology of the phenolic OH moiety. Crit. Rev. Toxicol, 31: 223-245.
    • (2001) Crit. Rev. Toxicol , vol.31 , pp. 223-245
    • Garg, R.1    Kurup, A.2    Hansch, C.3
  • 2
    • 0036882521 scopus 로고    scopus 로고
    • Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis
    • Cronin, M.T., Aptula, A.O., Duffy, J.C., Netzeva, T.I., Rowe, P.H., Valkova, I.V. and Schultz, T.W. 2002. Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Chemosphere, 49: 1201-1221.
    • (2002) Chemosphere , vol.49 , pp. 1201-1221
    • Cronin, M.T.1    Aptula, A.O.2    Duffy, J.C.3    Netzeva, T.I.4    Rowe, P.H.5    Valkova, I.V.6    Schultz, T.W.7
  • 3
    • 0032843986 scopus 로고    scopus 로고
    • Removal of phenolic compounds from synthetic wastewater using soybean peroxidase
    • Caza, N., Bewtra, J.K., Biswas, N. and Taylor, K.E. 1999. Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Res, 33: 3012-3018.
    • (1999) Water Res , vol.33 , pp. 3012-3018
    • Caza, N.1    Bewtra, J.K.2    Biswas, N.3    Taylor, K.E.4
  • 4
    • 0025071339 scopus 로고
    • Mode of action and the assessment of chemical hazards in the presence of limited data: Use of structure-activity relationships (SAR) under TSCA, Section 5
    • Auer, C.M., Nabholz, J.V. and Baetcke, K.P. 1990. Mode of action and the assessment of chemical hazards in the presence of limited data: Use of structure-activity relationships (SAR) under TSCA, Section 5. Environ. Health Perspect, 87: 183-197.
    • (1990) Environ. Health Perspect , vol.87 , pp. 183-197
    • Auer, C.M.1    Nabholz, J.V.2    Baetcke, K.P.3
  • 5
    • 23844470694 scopus 로고    scopus 로고
    • Posetic quantitative superstructure/activity relationships (QSSARs) for chlorobenzenes
    • Ivanciuc, T., Ivanciuc, O. and Klein, D.J. 2005. Posetic quantitative superstructure/activity relationships (QSSARs) for chlorobenzenes. J. Chem. Inf. Model., 45: 870-879.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 870-879
    • Ivanciuc, T.1    Ivanciuc, O.2    Klein, D.J.3
  • 6
    • 29644432730 scopus 로고    scopus 로고
    • A quantitative structure-activity relationship model for the intrinsic activity of uncouplers of oxidative phosphorylation
    • Spycher, S., Escher, B.I. and Gasteiger, J. 2005. A quantitative structure-activity relationship model for the intrinsic activity of uncouplers of oxidative phosphorylation. Chem. Res. Toxicol., 18: 1858-1867.
    • (2005) Chem. Res. Toxicol. , vol.18 , pp. 1858-1867
    • Spycher, S.1    Escher, B.I.2    Gasteiger, J.3
  • 7
    • 0028679436 scopus 로고
    • Predicting modes of toxic action from chemical structure: An overview
    • Bradbury, S.P. 1994. Predicting modes of toxic action from chemical structure: An overview. SAR QSAR Environ. Res., 2: 89-104.
    • (1994) SAR QSAR Environ. Res. , vol.2 , pp. 89-104
    • Bradbury, S.P.1
  • 8
    • 0030981036 scopus 로고    scopus 로고
    • Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas)
    • Russom, C.L., Bradbury, S.P., Broderius, S.J., Hammermeister, D. and Drummond, R.A. 1997. Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas). Environ. Toxicol. Chem., 16: 948-967.
    • (1997) Environ. Toxicol. Chem. , vol.16 , pp. 948-967
    • Russom, C.L.1    Bradbury, S.P.2    Broderius, S.J.3    Hammermeister, D.4    Drummond, R.A.5
  • 10
    • 0036000566 scopus 로고    scopus 로고
    • Determining the mechanisms of toxic action of phenols to Tetrahymena pyriformis
    • Ren, S. 2002. Determining the mechanisms of toxic action of phenols to Tetrahymena pyriformis. Environ. Toxicol., 17: 119-127.
    • (2002) Environ. Toxicol. , vol.17 , pp. 119-127
    • Ren, S.1
  • 11
    • 0036855227 scopus 로고    scopus 로고
    • Use of molecular descriptors in separating phenols by three mechanisms of toxic action
    • Ren, S. 2002. Use of molecular descriptors in separating phenols by three mechanisms of toxic action. Quant. Struct. Act.-Relat., 21: 486-492.
    • (2002) Quant. Struct. Act.-Relat. , vol.21 , pp. 486-492
    • Ren, S.1
  • 12
    • 13844318087 scopus 로고    scopus 로고
    • Use of structure descriptors to discriminate between modes of toxic action of phenols
    • Spycher, S., Pellegrini, E. and Gasteiger, J. 2005. Use of structure descriptors to discriminate between modes of toxic action of phenols. J. Chem. Inf. Model., 45: 200-208.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 200-208
    • Spycher, S.1    Pellegrini, E.2    Gasteiger, J.3
  • 13
    • 0042362292 scopus 로고    scopus 로고
    • Stepwise discrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay
    • Schuurmann, G., Aptula, A.O., Kuhne, R. and Ebert, R.U. 2003. Stepwise discrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay. Chem. Res. Toxicol., 16: 974-987.
    • (2003) Chem. Res. Toxicol. , vol.16 , pp. 974-987
    • Schuurmann, G.1    Aptula, A.O.2    Kuhne, R.3    Ebert, R.U.4
  • 14
    • 0142089677 scopus 로고    scopus 로고
    • Overview of data and conceptual approaches for derivation of quantitative structure-activity relationships for ecotoxicological effects of organic chemicals
    • Bradbury, S.P., Russom, C.L., Ankley, G.T., Schultz, T.W. and Walker, J.D. 2003. Overview of data and conceptual approaches for derivation of quantitative structure-activity relationships for ecotoxicological effects of organic chemicals. Environ. Toxicol. Chem., 22: 1789-1798.
    • (2003) Environ. Toxicol. Chem. , vol.22 , pp. 1789-1798
    • Bradbury, S.P.1    Russom, C.L.2    Ankley, G.T.3    Schultz, T.W.4    Walker, J.D.5
  • 15
    • 0037405470 scopus 로고    scopus 로고
    • An exploratory study of the use of multivariate techniques to determine mechanisms of toxic action
    • Ren, S., Frymier, P.D. and Schultz, T.W. 2003. An exploratory study of the use of multivariate techniques to determine mechanisms of toxic action. Ecotoxicol. Environ. Saf., 55: 86-97.
    • (2003) Ecotoxicol. Environ. Saf. , vol.55 , pp. 86-97
    • Ren, S.1    Frymier, P.D.2    Schultz, T.W.3
  • 16
    • 0344686417 scopus 로고    scopus 로고
    • Comparative assessment of multiresponse regression methods for predicting the mechanisms of toxic action of phenols
    • Ren, S. and Kim, H. 2003. Comparative assessment of multiresponse regression methods for predicting the mechanisms of toxic action of phenols. J. Chem. Inf. Comput. Sci, 43: 2106-2110.
    • (2003) J. Chem. Inf. Comput. Sci , vol.43 , pp. 2106-2110
    • Ren, S.1    Kim, H.2
  • 17
    • 33746238242 scopus 로고    scopus 로고
    • Discrimination between modes of toxic action of phenols using rule based methods
    • Norinder, U., Liden, P. and Bostrom, H. 2006. Discrimination between modes of toxic action of phenols using rule based methods. Mol. Divers., 10: 207-212.
    • (2006) Mol. Divers. , vol.10 , pp. 207-212
    • Norinder, U.1    Liden, P.2    Bostrom, H.3
  • 18
    • 1542346418 scopus 로고    scopus 로고
    • A novel method for protein secondary structure prediction using dual-layer SVM and profiles
    • Guo, J., Chen, H., Sun, Z. and Lin, Y. 2004. A novel method for protein secondary structure prediction using dual-layer SVM and profiles. Proteins, 54: 738-743.
    • (2004) Proteins , vol.54 , pp. 738-743
    • Guo, J.1    Chen, H.2    Sun, Z.3    Lin, Y.4
  • 19
    • 0021529312 scopus 로고
    • Artificial intelligence approach to stucture-activities studies. Computer automated structure evaluation of biological activity of organic molecules
    • Klopman, G. 1984. Artificial intelligence approach to stucture-activities studies. Computer automated structure evaluation of biological activity of organic molecules. J. Am. Chem. Soc., 106: 7315-7321.
    • (1984) J. Am. Chem. Soc. , vol.106 , pp. 7315-7321
    • Klopman, G.1
  • 21
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J.R. 1986. Induction of decision trees. Machine Learn., 1: 81-106.
    • (1986) Machine Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 22
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover, T. and Hart, P. 1967. Nearest neighbor pattern classification. IEEE Trans. Inform. Theory, 13: 21-27.
    • (1967) IEEE Trans. Inform. Theory , vol.13 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 23
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha, D. and Kibler, D. 1991. Instance-based learning algorithms. Machine Learn., 6: 37-66.
    • (1991) Machine Learn. , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2
  • 24
    • 0004315104 scopus 로고    scopus 로고
    • 1st ed., WILEY-VCH Verlag GmbH, D-69469 Weinheim, Federal Republic of Germany
    • R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, 1st ed., Vol. 11, WILEY-VCH Verlag GmbH, D-69469 Weinheim, Federal Republic of Germany, 2000, p. 667.
    • (2000) Handbook of Molecular Descriptors , vol.11 , pp. 667
    • Todeschini, R.1    Consonni, V.2
  • 26
    • 8844277864 scopus 로고    scopus 로고
    • 1.0 ed., Central University of Las Villas. Villa Clara. Cuba, A preliminary experimental version; in future a professional version can be obtained upon request to Y. Marrero, or ymarrero77@yahoo.es
    • Y. Marrero-Ponce and V. Romero, TOMOCOMD software (TOpological MOlecular COMputer Design) for Windows, 1.0 ed., Central University of Las Villas. Villa Clara. Cuba, 2002. A preliminary experimental version; in future a professional version can be obtained upon request to Y. Marrero: yovanimp@qf.uclv.edu.cu or ymarrero77@yahoo.es
    • (2002) TOMOCOMD software (TOpological MOlecular COMputer Design) for Windows
    • Marrero-Ponce, Y.1    Romero, V.2
  • 28
    • 48549086653 scopus 로고    scopus 로고
    • Estimation of ADME properties in drug discovery: Predicting Caco-2 cell permeability using atom-based stochastic and non-stochastic linear indices
    • Castillo-Garit, J.A., Marrero-Ponce, Y., Torrens, F. and García-Domenech, R. 2008. Estimation of ADME properties in drug discovery: Predicting Caco-2 cell permeability using atom-based stochastic and non-stochastic linear indices. J. Pharm. Sci., 97: 1946-1976.
    • (2008) J. Pharm. Sci. , vol.97 , pp. 1946-1976
    • Castillo-Garit, J.A.1    Marrero-Ponce, Y.2    Torrens, F.3    García-Domenech, R.4
  • 33
    • 84860265647 scopus 로고    scopus 로고
    • A review of QSAR studies to discover new drug-like compounds active against Leishmaniasis and Trypanosomiasis
    • Castillo-Garit, J.A., Abad, C., Rodriguez-Borges, J.E., Marrero-Ponce, Y. and Torrens, F. 2012. A review of QSAR studies to discover new drug-like compounds active against Leishmaniasis and Trypanosomiasis. Curr. Top. Med. Chem., 12: 852-865.
    • (2012) Curr. Top. Med. Chem. , vol.12 , pp. 852-865
    • Castillo-Garit, J.A.1    Abad, C.2    Rodriguez-Borges, J.E.3    Marrero-Ponce, Y.4    Torrens, F.5
  • 34
    • 34347209077 scopus 로고    scopus 로고
    • Atom-based stochastic and non-stochastic 3D-chiral bilinear indices and their applications to central chirality codification
    • Castillo-Garit, J.A., Marrero-Ponce, Y., Torrens, F. and Rotondo, R. 2007. Atom-based stochastic and non-stochastic 3D-chiral bilinear indices and their applications to central chirality codification. J. Mol. Graphics Model., 26: 32-47.
    • (2007) J. Mol. Graphics Model. , vol.26 , pp. 32-47
    • Castillo-Garit, J.A.1    Marrero-Ponce, Y.2    Torrens, F.3    Rotondo, R.4
  • 37
    • 0001214991 scopus 로고    scopus 로고
    • TERATOX: Tetrahymena pyriformis population grow impairment endpoint- A surrogate for fish lethality
    • Schultz, T.W. 1997. TERATOX: Tetrahymena pyriformis population grow impairment endpoint- A surrogate for fish lethality. Toxicol. Meth., 7: 289-309.
    • (1997) Toxicol. Meth. , vol.7 , pp. 289-309
    • Schultz, T.W.1
  • 39
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press
    • C. Platt. J, Fast training of support vector machines using sequential minimal optimization, in Advances in Kernel Methods, MIT Press, 1999, pp. 185-208.
    • (1999) Advances in Kernel Methods , pp. 185-208
    • Platt, C.J.1
  • 44
    • 85195015963 scopus 로고    scopus 로고
    • STATISTICA version. 6.0, StatSoft, pp. Tulsa
    • STATISTICA version. 6.0, StatSoft, (2001), pp. Tulsa.
    • (2001)
  • 45
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classifcation: An overview
    • Pierre, B., Brunak, S., Chauvin, Y., Andersen, C.A.F. and Henrick, N. 2000. Assessing the accuracy of prediction algorithms for classifcation: An overview. Bioinformatics, 16: 412-424.
    • (2000) Bioinformatics , vol.16 , pp. 412-424
    • Pierre, B.1    Brunak, S.2    Chauvin, Y.3    Andersen, C.A.F.4    Henrick, N.5
  • 46
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: Comparison under imprecise class and cost distribution
    • J.W. Shavlik, ed., Newport Beach, California, August 14-17, AAAI Press, Menlo Park, CA
    • F. Provost and T. Fawcett, Analysis and visualization of classifier performance: Comparison under imprecise class and cost distribution, Third International Conference on Knowledge Discovery and Data Mining (KDD-97), J.W. Shavlik, ed., Newport Beach, California, August 14-17 1997, AAAI Press, Menlo Park, CA, pp. 43-48.
    • (1997) Third International Conference on Knowledge Discovery and Data Mining (KDD-97) , pp. 43-48
    • Provost, F.1    Fawcett, T.2
  • 47
    • 0002900357 scopus 로고    scopus 로고
    • The case against accuracy estimation for comparing induction algorithms
    • J.W. Shavlik, ed., Morgan Kaufmann
    • F. Provost, T. Fawcett, and R. Kohavi, The case against accuracy estimation for comparing induction algorithms, Fifteenth International Conference on Machine Learning, J.W. Shavlik, ed., 1998, Morgan Kaufmann, pp. 445-453.
    • (1998) Fifteenth International Conference on Machine Learning , pp. 445-453
    • Provost, F.1    Fawcett, T.2    Kohavi, R.3
  • 48
    • 26944454497 scopus 로고    scopus 로고
    • ROC graphs: Notes and practical considerations for researchers
    • T. Fawcett, ROC graphs: Notes and practical considerations for researchers, Machine Learn. (2004), pp. 1-38.
    • (2004) Machine Learn , pp. 1-38
    • Fawcett, T.1
  • 50
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A.P. Bradley., The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognit. 30 (1997), pp. 1145-1159.
    • (1997) Pattern Recognit , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 51
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, J.A. and Mcneil, B.J. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143: 29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    Mcneil, B.J.2
  • 52
    • 85195008991 scopus 로고    scopus 로고
    • Toxtree, version 1.60 software available at
    • Toxtree, version 1.60 software available athttp://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/qsar_tools/toxtree
  • 54
    • 14644422971 scopus 로고    scopus 로고
    • Combining pattern classifiers
    • Wiley Interscience
    • L.I. Kuncheva, Combining pattern classifiers, in Methods and Algorithms, Wiley Interscience, 2004.
    • (2004) Methods and Algorithms
    • Kuncheva, L.I.1
  • 55
    • 0002900451 scopus 로고
    • Ensemble methods in machine learning
    • Dietterrich, T.G. 1857. Ensemble methods in machine learning. Lect. Not. Comput. Sci., 2000: 1-15.
    • (1857) Lect. Not. Comput. Sci. , vol.2000 , pp. 1-15
    • Dietterrich, T.G.1
  • 56
    • 27744590591 scopus 로고    scopus 로고
    • QSAR applicabilty domain estimation by projection of the training set descriptor space. A review
    • Jaworska, J., Nikolova-Jeliazkova, N. and Aldenberg, T. 2005. QSAR applicabilty domain estimation by projection of the training set descriptor space. A review. Altern. Lab. Anim., 33: 445-459.
    • (2005) Altern. Lab. Anim. , vol.33 , pp. 445-459
    • Jaworska, J.1    Nikolova-Jeliazkova, N.2    Aldenberg, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.