메뉴 건너뛰기




Volumn 48, Issue SUPPL.1, 2013, Pages

Suggestions on the use of statistical methodologies in studies of the European Group for Blood and Marrow Transplantation

Author keywords

competing risks; statistical guidelines; statistical methods; stem cell transplantation research; survival analysis

Indexed keywords

ACCURACY; ARTICLE; CLINICAL STUDY; DISEASE FREE SURVIVAL; GRAFT VERSUS HOST REACTION; HEMATOPOIETIC STEM CELL TRANSPLANTATION; HUMAN; MEDICAL RESEARCH; PRACTICE GUIDELINE; PRIORITY JOURNAL; PROBABILITY; PROGRESSION FREE SURVIVAL; RECURRENCE FREE SURVIVAL; REGRESSION ANALYSIS; STATISTICAL ANALYSIS; STATISTICAL SIGNIFICANCE; STUDY DESIGN; SURVIVAL RATE;

EID: 84875201737     PISSN: 02683369     EISSN: 14765365     Source Type: Journal    
DOI: 10.1038/bmt.2012.282     Document Type: Article
Times cited : (164)

References (50)
  • 1
    • 0025805329 scopus 로고
    • Multiple testing in clinical trials
    • Bauer P. Multiple testing in clinical trials. Stat Med 1991; 10: 871-890.
    • (1991) Stat Med , vol.10 , pp. 871-890
    • Bauer, P.1
  • 3
    • 55249097625 scopus 로고    scopus 로고
    • An easy mathematical proof showed that time-dependent bias inevitably leads to biased effect estimation
    • Beyersmann J, Gastmeier P, Wolkewitz M, Schumacher M. An easy mathematical proof showed that time-dependent bias inevitably leads to biased effect estimation. J Clin Epidemiol 2008; 61: 1216-1221.
    • (2008) J Clin Epidemiol , vol.61 , pp. 1216-1221
    • Beyersmann, J.1    Gastmeier, P.2    Wolkewitz, M.3    Schumacher, M.4
  • 4
    • 0021343213 scopus 로고
    • A non-parametric graphical representation of the relationship between survival and the occurrence of an event: Application to responder versus non-responder bias
    • Simon R, Makuch RW. A non-parametric graphical representation of the relationship between survival and the occurrence of an event: application to responder versus nonresponder bias. Stat Med 1984; 3: 35-44. (Pubitemid 14142275)
    • (1984) Statistics in Medicine , vol.3 , Issue.1 , pp. 35-44
    • Simon, R.1    Makuch, R.W.2
  • 5
    • 34248397713 scopus 로고    scopus 로고
    • Tutorial in biostatistics: Competing risk and multi-state models
    • DOI 10.1002/sim.2712
    • Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Stat Med 2007; 26: 2389-2430. (Pubitemid 46730255)
    • (2007) Statistics in Medicine , vol.26 , Issue.11 , pp. 2389-2430
    • Putter, H.1    Fiocco, M.2    Gekus, R.B.3
  • 6
    • 0035973278 scopus 로고    scopus 로고
    • Multi-state models and outcome prediction in bone marrow transplantation
    • DOI 10.1002/sim.810
    • Keiding N, Klein JP, Horowitz MM. Multi-state models and outcome prediction in bone marrow transplantation. Stat Med 2001; 20: 1871-1885. (Pubitemid 32590959)
    • (2001) Statistics in Medicine , vol.20 , Issue.12 , pp. 1871-1885
    • Keiding, N.1    Klein, J.P.2    Horowitz, M.M.3
  • 7
    • 53749101633 scopus 로고    scopus 로고
    • Assessment of the role of timing of second transplantation in multiple myeloma by multistate modeling
    • Iacobelli S, Apperley J, Morris C. Assessment of the role of timing of second transplantation in multiple myeloma by multistate modeling. Exp Hematol 2008, 1567-1571.
    • (2008) Exp Hematol , pp. 1567-1571
    • Iacobelli, S.1    Apperley, J.2    Morris, C.3
  • 8
    • 84875182703 scopus 로고    scopus 로고
    • Guidelines for proper use and interpretation of the Cox model for the European Group for Blood and Marrow Transplantation Available from the EBMT website
    • Iacobelli S. Statistical modeling of complex disease histories in Bone Marrow Transplant. Guidelines for proper use and interpretation of the Cox model for the European Group for Blood and Marrow Transplantation. 2004. Available from the EBMT website www.ebmt.org.
    • (2004) Statistical Modeling of Complex Disease Histories in Bone Marrow Transplant
    • Iacobelli, S.1
  • 9
    • 55949123875 scopus 로고    scopus 로고
    • Dynamic predicting by landmarking as an alternative for multi-state modeling: An application to acute lymphoid leukemia data
    • van Houwelingen HC, Putter H. Dynamic predicting by landmarking as an alternative for multi-state modeling: an application to acute lymphoid leukemia data. Lifetime Data Anal 2008; 14: 447-463.
    • (2008) Lifetime Data Anal , vol.14 , pp. 447-463
    • Van Houwelingen, H.C.1    Putter, H.2
  • 10
    • 0035203456 scopus 로고    scopus 로고
    • Statistical methods for the analysis and presentation of the results of bone marrow transplants. Part I: Unadjusted analysis
    • DOI 10.1038/sj.bmt.1703260
    • Klein JP, Rizzo JD, Zhang MJ, Keiding N. Statistical methods for the analysis and presentation of the results of bone marrow transplants. Part 1: Unadjusted analysis. Bone Marrow Transplant 2001; 28: 909-915. (Pubitemid 33130231)
    • (2001) Bone Marrow Transplantation , vol.28 , Issue.10 , pp. 909-915
    • Klein, J.P.1    Rizzo, J.D.2    Zhang, M.-J.3    Keiding, N.4
  • 11
    • 0034034623 scopus 로고    scopus 로고
    • Summary curves for patients transplanted for chronic myeloid leukaemia salvaged by a donor lymphocyte infusion: The current leukaemia-free survival curve
    • DOI 10.1046/j.1365-2141.2000.01982.x
    • Klein JP, Keiding N, Shu YY, Szydlo RM, Goldman JM. Summary curves for patients transplanted for chronic myeloid leukaemia salvaged by a donor lymphocyte infusion: the current leukaemia-free survival curve. Br J Haematol 2000; 109: 148-152. (Pubitemid 30340591)
    • (2000) British Journal of Haematology , vol.109 , Issue.1 , pp. 148-152
    • Klein, J.P.1    Keiding, N.2    Shu, Y.3    Szydlo, R.M.4    Goldman, J.M.5
  • 12
    • 55949114901 scopus 로고    scopus 로고
    • Inference for current leukemia free survival
    • Liu, Logan, Klein JP. Inference for current leukemia free survival. Lifetime Data Anal 2008; 14: 432-446.
    • (2008) Lifetime Data Anal , vol.14 , pp. 432-446
    • Logan, L.1    Klein, J.P.2
  • 13
    • 35148838428 scopus 로고    scopus 로고
    • Analyzing survival curves at a fixed point in time
    • DOI 10.1002/sim.2864
    • Klein JP, Logan B, Harhoff M, Andersen PK. Analyzing survival curves at a fixed point in time. Stat Med 2007; 26: 4505-4519. (Pubitemid 47534694)
    • (2007) Statistics in Medicine , vol.26 , Issue.24 , pp. 4505-4519
    • Klein, J.P.1    Logan, B.2    Harhoff, M.3    Andersen, P.K.4
  • 14
    • 49749103124 scopus 로고    scopus 로고
    • Comparing treatments in the presence of crossing survival curves: An application to Bone Marrow Transplantation
    • Logan B, Klein JP, Zhang MJ. Comparing treatments in the presence of crossing survival curves: an application to Bone Marrow Transplantation. Biometrics 2008; 64: 733-740.
    • (2008) Biometrics , vol.64 , pp. 733-740
    • Logan, B.1    Klein, J.P.2    Zhang, M.J.3
  • 15
    • 33846213959 scopus 로고    scopus 로고
    • A SAS macro for parametric and semiparametric mixture cure models
    • DOI 10.1016/j.cmpb.2006.10.008, PII S0169260706002513
    • Corbiere F, Joly P. A SAS macro for parametric and semiparametric mixture cure models. Comput Meth Programs Biomed 2007; 85: 173-180. (Pubitemid 46108129)
    • (2007) Computer Methods and Programs in Biomedicine , vol.85 , Issue.2 , pp. 173-180
    • Corbiere, F.1    Joly, P.2
  • 16
    • 0037196195 scopus 로고    scopus 로고
    • Cure model analysis in cancer: An application to data from the Children's Cancer Group
    • DOI 10.1002/sim.987
    • Sposto R. Cure model analysis in cancer: an application to data from the Children's Cancer Group. Stat Med 2002; 21: 293-312. (Pubitemid 34048694)
    • (2002) Statistics in Medicine , vol.21 , Issue.2 , pp. 293-312
    • Sposto, R.1
  • 20
    • 0033616908 scopus 로고    scopus 로고
    • Estimation of failure probabilities in the presence of competing risks: New representations of old estimators
    • DOI 10.1002/(SICI)1097-0258(19990330)18:6<695::AID-SIM60>3.0.CO;2-O
    • Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representation of old estimators. Stat Med 1999; 18: 695-706. (Pubitemid 29126745)
    • (1999) Statistics in Medicine , vol.18 , Issue.6 , pp. 695-706
    • Gooley, T.A.1    Leisenring, W.2    Crowley, J.3    Storer, B.E.4
  • 21
    • 0000120995 scopus 로고
    • A class of K-sample tests for comparing the cumulative incidence of a competing risk
    • Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat 1988; 16: 1141-1154.
    • (1988) Ann Stat , vol.16 , pp. 1141-1154
    • Gray, R.J.1
  • 22
    • 1542532754 scopus 로고    scopus 로고
    • A proportional hazard model for the subdistribution of a competing risk
    • Fine JP, Gray RJ. A proportional hazard model for the subdistribution of a competing risk. JASA 1999; 94: 496-509.
    • (1999) JASA , vol.94 , pp. 496-509
    • Fine, J.P.1    Gray, R.J.2
  • 23
    • 15044348009 scopus 로고    scopus 로고
    • Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function
    • DOI 10.1111/j.0006-341X.2005.031209.x
    • Klein JP, Andersen PK. Regression modeling of competing risks data based on pseudo-values of the cumulative incidence function. Biometrics 2005; 61: 223-229. (Pubitemid 40380983)
    • (2005) Biometrics , vol.61 , Issue.1 , pp. 223-229
    • Klein, J.P.1    Andersen, P.K.2
  • 24
    • 50549102861 scopus 로고    scopus 로고
    • Choice and interpretation of statistical tests used when competing risks are present
    • Dignam JJ, Kocherginsky MN. Choice and interpretation of statistical tests used when competing risks are present. J Clin Oncol 2008; 26: 4027-4034.
    • (2008) J Clin Oncol , vol.26 , pp. 4027-4034
    • Dignam, J.J.1    Kocherginsky, M.N.2
  • 25
    • 29844457717 scopus 로고    scopus 로고
    • Regression models for hazard rates versus cumulative incidence probabilities in hematopoietic cell transplantation data
    • DOI 10.1016/j.bbmt.2005.09.005, PII S1083879105006610
    • Logan BR, Zhang MJ, Klein JP. Regression models for hazard rates versus cumulative incidence probabilities in haematopoietic cell transplantation data. Biol Bone Marrow Transplant 2006; 12 (Suppl 1): 107-112. (Pubitemid 43034129)
    • (2006) Biology of Blood and Marrow Transplantation , vol.12 , Issue.SUPPL. 1 , pp. 107-112
    • Logan, B.R.1    Zhang, M.-J.2    Klein, J.P.3
  • 27
    • 33644764720 scopus 로고    scopus 로고
    • Modelling competing risks in cancer studies
    • DOI 10.1002/sim.2246
    • Klein JP. Modeling competing risks in cancer studies. Stat Med 2006; 25: 1015-1034. (Pubitemid 43337987)
    • (2006) Statistics in Medicine , vol.25 , Issue.6 , pp. 1015-1034
    • Klein, J.P.1
  • 29
    • 0029851283 scopus 로고    scopus 로고
    • A note on quantifying follow-up in studies of failure time
    • DOI 10.1016/0197-2456(96)00075-X
    • Schemper M, Smith TL. A note on quantifying follow-up in studies of failure time. Control Clin Trials 1996; 17: 343-346. (Pubitemid 26342716)
    • (1996) Controlled Clinical Trials , vol.17 , Issue.4 , pp. 343-346
    • Schemper, M.1    Smith, T.L.2
  • 30
    • 0035663624 scopus 로고    scopus 로고
    • Statistical methods for the analysis and presentation of the results of bone marrow transplants. Part 2: Regression modeling
    • DOI 10.1038/sj.bmt.1703271
    • Klein JP, Rizzo JD, Zhang MJ, Keiding N. Statistical methods for the analysis and presentation of the results of bone marrow transplants. Part 2: Regression modelling. Bone Marrow Transplantation 2001; 28: 1001-1011. (Pubitemid 34030645)
    • (2001) Bone Marrow Transplantation , vol.28 , Issue.11 , pp. 1001-1011
    • Klein, J.P.1    Rizzo, J.D.2    Zhang, M.-J.3    Keiding, N.4
  • 31
    • 0033618142 scopus 로고    scopus 로고
    • Testing for centre effects in multi-centre survival studies: A Monte Carlo comparison of fixed and random effects tests
    • DOI 10.1002/(SICI)1097-0258(19990630)18:12<1489::AID-SIM140>3.0. CO;2-#
    • Andersen PK, Klein JP, Zhang MJ. Testing for centre effects in multi-centre survival studies: a Monte Carlo comparison of fixed and random effects tests. Stat Med 1999; 18: 1489-1500. (Pubitemid 29296604)
    • (1999) Statistics in Medicine , vol.18 , Issue.12 , pp. 1489-1500
    • Andersen, P.K.1    Klein, J.P.2    Zhang, M.-J.3
  • 32
    • 0842303548 scopus 로고    scopus 로고
    • Modelling clustered survival data from multicentre clinical trials
    • DOI 10.1002/sim.1599
    • Glidden DV, Vittingho E. Modeling clustered survival data from multicentre clinical trials. Stat Med 2004; 23: 369-388. (Pubitemid 38180794)
    • (2004) Statistics in Medicine , vol.23 , Issue.3 , pp. 369-388
    • Glidden, D.V.1    Vittinghoff, E.2
  • 33
    • 0035987873 scopus 로고    scopus 로고
    • Proportional hazards models with random effects to examine centre effects in multicentre cancer clinical trials
    • DOI 10.1191/0962280202sm284ra
    • Yamaguchi T, Ohashi Y, Matsuyama Y. Proportional hazards models with random effects to examine centre effects in multicentre cancer clinical trials. Stat Meth Med Res 2002; 11: 221-236. (Pubitemid 34678689)
    • (2002) Statistical Methods in Medical Research , vol.11 , Issue.3 , pp. 221-236
    • Yamaguchi, T.1    Ohashi, Y.2    Matsuyama, Y.3
  • 34
    • 31344435149 scopus 로고    scopus 로고
    • Dichotomizing continuous predictors in multiple regression: A bad idea
    • DOI 10.1002/sim.2331
    • Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med 2006; 25: 127-141. (Pubitemid 43136953)
    • (2006) Statistics in Medicine , vol.25 , Issue.1 , pp. 127-141
    • Royston, P.1    Altman, D.G.2    Sauerbrei, W.3
  • 35
    • 84875183735 scopus 로고
    • Five papers on frailty models for heterogeneity and dependence
    • Statistical Methods in Medical Research 1994 Vol. 3 (Five papers on frailty models for heterogeneity and dependence).
    • (1994) Statistical Methods in Medical Research , vol.3
  • 36
    • 0346102883 scopus 로고    scopus 로고
    • Extensions and Applications of the Cox-Aalen Survival Model
    • DOI 10.1111/j.0006-341X.2003.00119.x
    • Scheike TH, Zhang MJ. Extensions and applications of the Cox-Aalen survival model. Biometrics 2003; 59: 1036-1045. (Pubitemid 38021233)
    • (2003) Biometrics , vol.59 , Issue.4 , pp. 1036-1045
    • Scheike, T.H.1    Zhang, M.-J.2
  • 37
    • 33847345021 scopus 로고    scopus 로고
    • Dynamic prediction by landmarking in event history analysis
    • van Houwelingen HC. Dynamic prediction by landmarking in event history analysis. Scand J Stat 2007; 34: 70-85.
    • (2007) Scand J Stat , vol.34 , pp. 70-85
    • Van Houwelingen, H.C.1
  • 38
    • 3543135271 scopus 로고    scopus 로고
    • Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
    • DOI 10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0. CO;2-B
    • D'Agostino Jr RB. Tutorial in biostatistics. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 1998; 17: 2265-2281. (Pubitemid 28466823)
    • (1998) Statistics in Medicine , vol.17 , Issue.19 , pp. 2265-2281
    • D'Agostino Jr., R.B.1
  • 39
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • DOI 10.1002/sim.1903
    • Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med 2004; 23: 2937-2960. (Pubitemid 39200133)
    • (2004) Statistics in Medicine , vol.23 , Issue.19 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 40
    • 38849111846 scopus 로고    scopus 로고
    • Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure
    • DOI 10.1002/sim.3133
    • Senn S, Graf E, Caputo A. Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure. Stat Med 2007; 26: 5529-5544. (Pubitemid 351193579)
    • (2007) Statistics in Medicine , vol.26 , Issue.30 , pp. 5529-5544
    • Senn, S.1    Graf, E.2    Caputo, A.3
  • 41
    • 1842293418 scopus 로고    scopus 로고
    • An overview of statistical methods for multiple failure time data in clinical trials
    • Wei LJ, Glidden DV. An overview of statistical methods for multiple failure time data in clinical trials. Stat Med 1997; 16: 833-839.
    • (1997) Stat Med , vol.16 , pp. 833-839
    • Wei, L.J.1    Glidden, D.V.2
  • 42
    • 2442628111 scopus 로고    scopus 로고
    • Adjusted survival curves with inverse probability weights
    • DOI 10.1016/j.cmpb.2003.10.004, PII S0169260703001378
    • Cole SR, Hernán MA. Adjusted survival curves with inverse probability weights. Comput Meth Prog Biomed 2004; 75: 45-49. (Pubitemid 38648876)
    • (2004) Computer Methods and Programs in Biomedicine , vol.75 , Issue.1 , pp. 45-49
    • Cole, S.R.1    Hernan, M.A.2
  • 44
    • 0012837948 scopus 로고    scopus 로고
    • On semi-competing risks data
    • Fine JP, Jiang H, Chappell R. On semi-competing risks data. Biometrika. 2001; 88: 907-919. (Pubitemid 33771541)
    • (2001) Biometrika , vol.88 , Issue.4 , pp. 907-919
    • Fine, J.P.1    Jiang, H.2    Chappell, R.3
  • 45
    • 55949105766 scopus 로고    scopus 로고
    • Flexible competing risks regression modeling and goodness-of-fit
    • Scheike TH, Zhang MJ. Flexible competing risks regression modeling and goodness-of-fit. Lifetime Data Anal 2008; 14: 464-483.
    • (2008) Lifetime Data Anal , vol.14 , pp. 464-483
    • Scheike, T.H.1    Zhang, M.J.2
  • 46
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effect
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effect. Biometrika 1983; 70: 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 47
    • 34547622486 scopus 로고    scopus 로고
    • Competing risk analysis using R: An easy guide for clinicians
    • DOI 10.1038/sj.bmt.1705727, PII 1705727
    • Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transplant 2007; 40: 381-387. (Pubitemid 47202424)
    • (2007) Bone Marrow Transplantation , vol.40 , Issue.4 , pp. 381-387
    • Scrucca, L.1    Santucci, A.2    Aversa, F.3
  • 48
    • 77956481553 scopus 로고    scopus 로고
    • Regression modeling of competing risk using R: An in depth guide for clinicians
    • Scrucca L, Santucci A, Aversa F. Regression modeling of competing risk using R: an in depth guide for clinicians. Bone Marrow Transplant 2010; 45: 1388-1395.
    • (2010) Bone Marrow Transplant , vol.45 , pp. 1388-1395
    • Scrucca, L.1    Santucci, A.2    Aversa, F.3
  • 49
    • 79952954111 scopus 로고    scopus 로고
    • Mstate. An R package for the analysis of competing risks and multi-state models
    • de Wreede L, Fiocco M, Putter H. mstate. An R package for the analysis of competing risks and multi-state models. J Stat Softw 2011; 38: 1-30.
    • (2011) J Stat Softw , vol.38 , pp. 1-30
    • De Wreede, L.1    Fiocco, M.2    Putter, H.3
  • 50
    • 77955553749 scopus 로고    scopus 로고
    • The mstate package for estimation and prediction in non-and semi-parametric multistate and competing risks models
    • de Wreede L, Fiocco M, Putter H. The mstate package for estimation and prediction in non-and semi-parametric multistate and competing risks models. Comput Meth Prog Biomed 2010; 99: 261-274.
    • (2010) Comput Meth Prog Biomed , vol.99 , pp. 261-274
    • De Wreede, L.1    Fiocco, M.2    Putter, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.