메뉴 건너뛰기




Volumn , Issue , 2012, Pages 212-223

Adaptive multi-task sparse learning with an application to fMRI study

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; SAMPLING; SEMANTICS;

EID: 84875095701     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972825.19     Document Type: Conference Paper
Times cited : (11)

References (29)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:1817- 1853, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 2
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-273, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-273
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 3
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • 9
    • F. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Re- search, 1179-1225:2008, 9.
    • (2008) Journal of Machine Learning Re- Search , pp. 1179-1225
    • Bach, F.1
  • 4
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkage thresholding algorithm for linear inverse problems. SIAM Journal of Image Science, 2(1):183-202, 2009.
    • (2009) SIAM Journal of Image Science , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 6
    • 75249102673 scopus 로고    scopus 로고
    • Efficient online and batch learning using forward backward splitting
    • J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. Journal of Machine Learning Research, 10:2899-2934, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2899-2934
    • Duchi, J.1    Singer, Y.2
  • 7
  • 8
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96:1348-1360, 2001.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 11
    • 71149111015 scopus 로고    scopus 로고
    • Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery
    • H. Liu, M. Palatucci, and J. Zhang. Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. In Inernational Conference on Machine Learning, 2009.
    • (2009) Inernational Conference on Machine Learning
    • Liu, H.1    Palatucci, M.2    Zhang, J.3
  • 15
    • 77949526376 scopus 로고    scopus 로고
    • On the asymptotic properties of the group lasso estimator for linear models
    • Y. Nardi and A. Rinaldo. On the asymptotic properties of the group lasso estimator for linear models. Electronic Journal of Statistics, 2:605-633, 2008.
    • (2008) Electronic Journal of Statistics , vol.2 , pp. 605-633
    • Nardi, Y.1    Rinaldo, A.2
  • 16
    • 79957634445 scopus 로고    scopus 로고
    • Simultaneous support recovery in high dimensions: Benefits and perils of block ℓ1/ℓ1-regularization
    • S. Negahban and M. J. Wainwright. Simultaneous support recovery in high dimensions: Benefits and perils of block ℓ1/ℓ1-regularization. IEEE Transactions on Information Theory, 57 (6):3841-3863, 2011.
    • (2011) IEEE Transactions on Information Theory , vol.57 , Issue.6 , pp. 3841-3863
    • Negahban, S.1    Wainwright, M.J.2
  • 17
    • 67651063011 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite objective function
    • Center for Operations Research and Econometrics (CORE
    • Y. Nesterov. Gradient methods for minimizing composite objective function. Technical report, Universit catholique de Louvain, Center for Operations Research and Econometrics (CORE), 2007.
    • (2007) Technical Report, Universit Catholique de Louvain
    • Nesterov, Y.1
  • 19
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, 20:231-252, 2010.
    • (2010) Statistics and Computing , vol.20 , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan, M.I.3
  • 26
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B, 68:49-67, 2006.
    • (2006) Journal of the Royal Statistical Society: Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 27
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476):1418-1429, 2006.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1
  • 29
    • 62549126570 scopus 로고    scopus 로고
    • On the adaptive elastic-net with a diverging number of parameters
    • H. Zou and H. Zhang. On the adaptive elastic-net with a diverging number of parameters. Annals of Statistics, 37(4):1733-1751, 2009.
    • (2009) Annals of Statistics , vol.37 , Issue.4 , pp. 1733-1751
    • Zou, H.1    Zhang, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.