메뉴 건너뛰기




Volumn 22, Issue 5, 2013, Pages 889-899

Simulated annealing technique for fast learning of SOM networks

Author keywords

Clustering; Fast learning; Simulated annealing; SOM

Indexed keywords

CLUSTERING ALGORITHMS; CONFORMAL MAPPING; DATA VISUALIZATION; SELF ORGANIZING MAPS; SIMULATED ANNEALING;

EID: 84875071019     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-011-0780-6     Document Type: Article
Times cited : (13)

References (35)
  • 2
    • 77956874611 scopus 로고    scopus 로고
    • Fractal initialization for high-quality mapping with self-organizing maps
    • Valova I, Beaton D, Buer A, MacLean D (2010) Fractal initialization for high-quality mapping with self-organizing maps. Neural Comput Applic 19(7): 953-966.
    • (2010) Neural Comput Applic , vol.19 , Issue.7 , pp. 953-966
    • Valova, I.1    Beaton, D.2    Buer, A.3    MacLean, D.4
  • 3
    • 78751472047 scopus 로고    scopus 로고
    • Improved SOM Algorithm-HDSOM Applied in text clustering
    • 2010 International Conference on
    • Sun A (2010) Improved SOM Algorithm-HDSOM Applied in text clustering. Multimedia information networking and security (MINES), 2010 International Conference on, pp 306-309.
    • (2010) Multimedia information networking and security (MINES) , pp. 306-309
    • Sun, A.1
  • 4
    • 57849088789 scopus 로고    scopus 로고
    • A new SOM initialization algorithm for nonvectorial data
    • Fiannaca A, Rizzo R, Urso A, Gaglio S (2008) A new SOM initialization algorithm for nonvectorial data. Proc of KES 1: 41-48.
    • (2008) Proc of KES , vol.1 , pp. 41-48
    • Fiannaca, A.1    Rizzo, R.2    Urso, A.3    Gaglio, S.4
  • 5
    • 33646528177 scopus 로고    scopus 로고
    • A comparison between habituation and conscience mechanism in self-organizing maps
    • Rizzo R, Chella A (2006) A comparison between habituation and conscience mechanism in self-organizing maps. IEEE Trans Neural Netw 17(3): 807-810.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.3 , pp. 807-810
    • Rizzo, R.1    Chella, A.2
  • 7
    • 33644887129 scopus 로고    scopus 로고
    • The parameterless self-organizing map algorithm
    • Berglund E, Sitte J (2006) The parameterless self-organizing map algorithm. IEEE Trans Neural Netw 17(2): 305-316.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.2 , pp. 305-316
    • Berglund, E.1    Sitte, J.2
  • 8
    • 0035286374 scopus 로고    scopus 로고
    • Auto-SOM: recursive parameter estimation for guidance of self-organizing feature maps
    • Haese K (2001) Auto-SOM: recursive parameter estimation for guidance of self-organizing feature maps. Neural Comput 13(3): 595-619.
    • (2001) Neural Comput , vol.13 , Issue.3 , pp. 595-619
    • Haese, K.1
  • 9
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220(4598): 671-680.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.2    Vecchi, M.3
  • 11
    • 0344972928 scopus 로고    scopus 로고
    • Self-organizing maps: generalizations and new optimization techniques
    • Graepel T, Burger M, Obermayer K (1998) Self-organizing maps: generalizations and new optimization techniques. Neurocomputing 21: 173-190.
    • (1998) Neurocomputing , vol.21 , pp. 173-190
    • Graepel, T.1    Burger, M.2    Obermayer, K.3
  • 13
    • 0039552112 scopus 로고    scopus 로고
    • Kalman filter implementation of self-organizing feature maps
    • Haese K (1999) Kalman filter implementation of self-organizing feature maps. Neural Comput 11(5): 1211-1233.
    • (1999) Neural Comput , vol.11 , Issue.5 , pp. 1211-1233
    • Haese, K.1
  • 14
    • 0032207165 scopus 로고    scopus 로고
    • Self-organizing feature map with self-adjusting learning parameters
    • Haese K (1998) Self-organizing feature map with self-adjusting learning parameters. IEEE Trans Neural Netw 9(6): 1270-1278.
    • (1998) IEEE Trans Neural Netw , vol.9 , Issue.6 , pp. 1270-1278
    • Haese, K.1
  • 15
  • 16
    • 0024900644 scopus 로고
    • Very fast simulated re-annealing
    • Ingber L (1989) Very fast simulated re-annealing. J Math Comput Model 12(8): 967-973.
    • (1989) J Math Comput Model , vol.12 , Issue.8 , pp. 967-973
    • Ingber, L.1
  • 17
    • 3042983187 scopus 로고    scopus 로고
    • Adaptive simulated annealing (ASA): lessons learned
    • Ingber L (1996) Adaptive simulated annealing (ASA): lessons learned. J Control Cybern 25(1): 33-54.
    • (1996) J Control Cybern , vol.25 , Issue.1 , pp. 33-54
    • Ingber, L.1
  • 19
    • 38149005177 scopus 로고    scopus 로고
    • National Cancer Institute
    • National Cancer Institute, DTP AIDS antiviral screen dataset. http://dtp. nci. nih. gov/docs/aids/aids/data. html.
    • DTP AIDS antiviral screen dataset
  • 24
    • 84956853519 scopus 로고    scopus 로고
    • On the use of self-organizing maps for clustering and visualization
    • Flexer A (1999) On the use of self-organizing maps for clustering and visualization. Comput Sci 1704: 80-88.
    • (1999) Comput Sci , vol.1704 , pp. 80-88
    • Flexer, A.1
  • 25
    • 38149058362 scopus 로고    scopus 로고
    • Improved SOM learning using simulated annealing
    • Fiannaca A, Di Fatta G, Gaglio S, Rizzo R, Urso A (2007) Improved SOM learning using simulated annealing. LNCS 4668: 279-288.
    • (2007) Lncs , vol.4668 , pp. 79-288
    • Fiannaca, A.1    Di Fatta, G.2    Gaglio, S.3    Rizzo, R.4    Urso, A.5
  • 27
    • 0028444401 scopus 로고
    • Seeded region growing
    • Adams R, Bischof L (1994) Seeded region growing. IEEE Trans PAMI 16(6): 641-647.
    • (1994) IEEE Trans PAMI , vol.16 , Issue.6 , pp. 641-647
    • Adams, R.1    Bischof, L.2
  • 28
    • 14944348667 scopus 로고    scopus 로고
    • clustering validity assessment: finding the optimal partitioning of data set
    • Halkidi M, Vazirgiannis M (2001) clustering validity assessment: finding the optimal partitioning of data set. In: Proceedings of ICDM 2001, pp 187-194.
    • (2001) Proceedings of ICDM 2001 , pp. 187-194
    • Halkidi, M.1    Vazirgiannis, M.2
  • 29
    • 0026898892 scopus 로고
    • Quantifying the neighborhood preservation of self-organizing feature maps
    • Bauer HU, Pawelzik KR (1992) Quantifying the neighborhood preservation of self-organizing feature maps. IEEE Trans Neural Netw 3(4): 570-579.
    • (1992) IEEE Trans Neural Netw , vol.3 , Issue.4 , pp. 570-579
    • Bauer, H.U.1    Pawelzik, K.R.2
  • 30
    • 0031097231 scopus 로고    scopus 로고
    • Topology preservation in self-organizing feature maps: exact definition and measurement
    • Villman T, Der R, Hermann M, Martinetz T (1997) Topology preservation in self-organizing feature maps: exact definition and measurement. IEEE Trans Neural Netw 8(2): 256-266.
    • (1997) IEEE Trans Neural Netw , vol.8 , Issue.2 , pp. 256-266
    • Villman, T.1    Der, R.2    Hermann, M.3    Martinetz, T.4
  • 31
    • 0029727599 scopus 로고    scopus 로고
    • Topology preservation in self-organizing maps
    • Kiviluoto K (1996) Topology preservation in self-organizing maps. In: Proceedings of ICNN 1996, pp 294-299.
    • (1996) Proceedings of ICNN 1996 , pp. 294-299
    • Kiviluoto, K.1
  • 32
    • 34548640457 scopus 로고    scopus 로고
    • A quick assessment of topology preservation for SOM structures
    • Vidaurre D, Muruzabal J (2007) A quick assessment of topology preservation for SOM structures. IEEE Trans Neural Netw 18(5): 1524-1528.
    • (2007) IEEE Trans Neural Netw , vol.18 , Issue.5 , pp. 1524-1528
    • Vidaurre, D.1    Muruzabal, J.2
  • 33
    • 33646087885 scopus 로고    scopus 로고
    • An aggregated clustering approach using multi-ant colonies algorithms
    • Yang Y, Kamel MS (2006) An aggregated clustering approach using multi-ant colonies algorithms. Pattern Recognit 39(7): 1278-1289.
    • (2006) Pattern Recognit , vol.39 , Issue.7 , pp. 1278-1289
    • Yang, Y.1    Kamel, M.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.