메뉴 건너뛰기




Volumn 19, Issue 5, 2009, Pages 625-639

Clustering quality and topology preservation in Fast Learning SOMS

Author keywords

Clustering; FLSOM; SOM

Indexed keywords

CLUSTERING QUALITY; CONVERGENCE TIME; FAST LEARNING; INPUT DATAS; INPUT SPACE; MULTI-DIMENSIONAL DATASETS; TOPOLOGY PRESERVATION; TRAINING PHASE; UNSUPERVISED NEURAL NETWORKS;

EID: 71949129319     PISSN: 12100552     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (30)
  • 6
    • 0035286374 scopus 로고    scopus 로고
    • Auto-SOM: Recursive parameter estimation for guidance of self-organizing feature maps
    • Haese K.: Auto-SOM: recursive parameter estimation for guidance of self-organizing feature maps, Neural Comput., 13, 3, 2001, pp. 595-619.
    • (2001) Neural Comput. , vol.13 , Issue.3 , pp. 595-619
    • Haese, K.1
  • 7
    • 0039552112 scopus 로고    scopus 로고
    • Kalman filter implementation of self-organizing feature maps
    • Haese K.: Kalman filter implementation of self-organizing feature maps, Neural Comput., 11, 5, 1999, pp. 1211-1233.
    • (1999) Neural Comput. , vol.11 , Issue.5 , pp. 1211-1233
    • Haese, K.1
  • 8
    • 0032207165 scopus 로고    scopus 로고
    • Self-organizing feature map with self-adjusting learning parameters
    • Haese K.: Self-organizing feature map with self-adjusting learning parameters, IEEE Transactions on Neural Network, 9, 6, 1998, pp. 1270-1278.
    • (1998) IEEE Transactions on Neural Network , vol.9 , Issue.6 , pp. 1270-1278
    • Haese, K.1
  • 9
    • 33644887129 scopus 로고    scopus 로고
    • The parameterless self-organizing map algorithm
    • Berglund E., Sitte J.: The parameterless self-organizing map algorithm. IEEE Transactions on Neural Networks, 17, 2, 2006, pp. 305-316.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.2 , pp. 305-316
    • Berglund, E.1    Sitte, J.2
  • 10
    • 33646528177 scopus 로고    scopus 로고
    • A comparison between habituation and conscience mechanism in self-organizing maps
    • Rizzo R., Chella A.: A Comparison between Habituation and Conscience Mechanism in Self-Organizing Maps, IEEE Transactions on neural networks, 17, 3, 2006, pp. 807-810.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.3 , pp. 807-810
    • Rizzo, R.1    Chella, A.2
  • 11
    • 0024123145 scopus 로고
    • Adding a conscience to competitive learning
    • IEEE Service Center, Piscataway, NJ
    • DeSieno D.: Adding a conscience to competitive learning, Proc. ICNN'88, IEEE Service Center, Piscataway, NJ, 1988, pp. 117-124.
    • (1988) Proc. ICNN'88 , pp. 117-124
    • DeSieno, D.1
  • 12
    • 85069788587 scopus 로고    scopus 로고
    • Algorithm for fast and reliable ESOM learning
    • Nocker M., Mörchen F., Ultsch A.: An algorithm for fast and reliable ESOM learning, Proc. of ESANN, 2006, pp. 131-136.
    • (2006) Proc. of ESANN , pp. 131-136
    • Nocker, M.1    Mörchen, F.2    An, U.A.3
  • 13
    • 56149114998 scopus 로고    scopus 로고
    • Fast semi-automatic segmentation algorithm for Self-Organizing Maps
    • Opolon D., Moutarde F.: Fast semi-automatic segmentation algorithm for Self-Organizing Maps, Proc. of ESANN, 2004, pp. 507-512.
    • (2004) Proc. of ESANN , pp. 507-512
    • Opolon, D.1    Moutarde, F.2
  • 14
    • 0029288718 scopus 로고
    • Interpreting the Kohonen self-organizing feature map using contiguityconstrained clustering
    • Murtagh F.: Interpreting the Kohonen self-organizing feature map using contiguityconstrained clustering, Pattern Recognition Letters, 16, 4, 1995, pp. 399-408.
    • (1995) Pattern Recognition Letters , vol.16 , Issue.4 , pp. 399-408
    • Murtagh, F.1
  • 17
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R. A.: The Use of Multiple Measurements in Taxonomic Problems, Annals of Eugenics, 7, 1936, pp. 179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 20
    • 0026898892 scopus 로고
    • Quantifying the neighborhood preservation of self-organizing feature maps
    • Bauer H. U., Pawelzik K. R.: Quantifying the neighborhood preservation of self-organizing feature maps, IEEE Transaction on Neural Networks, 3, 4, 1992, pp. 570-579.
    • (1992) IEEE Transaction on Neural Networks , vol.3 , Issue.4 , pp. 570-579
    • Bauer, H.U.1    Pawelzik, K.R.2
  • 21
    • 0031097231 scopus 로고    scopus 로고
    • Topology preservation in self-organizing feature maps: Exact definition and measurement
    • Villman T., Der R., Hermann M., Martinetz T.: Topology preservation in self-organizing feature maps: Exact definition and measurement, IEEE Transaction on Neural Networks, 8, 2, 1997, pp. 256-266.
    • (1997) IEEE Transaction on Neural Networks , vol.8 , Issue.2 , pp. 256-266
    • Villman, T.1    Der, R.2    Hermann, M.3    Martinetz, T.4
  • 22
    • 0029727599 scopus 로고    scopus 로고
    • Topology preservation in self-organizing maps
    • Kiviluoto K.: Topology Preservation in Self-Organizing Maps. Proc. of ICNN 1996, 1996, pp. 294-299.
    • (1996) Proc. of ICNN 1996 , pp. 294-299
    • Kiviluoto, K.1
  • 23
    • 34548640457 scopus 로고    scopus 로고
    • A quick assessment of topology preservation for SOM structures
    • Vidaurre D., Muruzabal J.: A Quick Assessment of Topology Preservation for SOM Structures, IEEE Transactions on Neural Networks, 18, 5, 2007, pp. 1524-1528.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.5 , pp. 1524-1528
    • Vidaurre, D.1    Muruzabal, J.2
  • 24
    • 14944348667 scopus 로고    scopus 로고
    • Clustering validity assessment: Finding the optimal partitioning of data set
    • Halkidi, M., Vazirgiannis M.: Clustering Validity Assessment: Finding the Optimal Partitioning of Data Set, Proc. of ICDM 2001, pp. 187-194.
    • (2001) Proc. of ICDM , pp. 187-194
    • Halkidi, M.1    Vazirgiannis, M.2
  • 25
    • 33646087885 scopus 로고    scopus 로고
    • An aggregated clustering approach using multi-ant colonies algorithms
    • Yang Y., Kamel, M. S.: An aggregated clustering approach using multi-ant colonies algorithms, Pattern Recognition, 39, 7, 2006, pp. 1278-1289.
    • (2006) Pattern Recognition , vol.39 , Issue.7 , pp. 1278-1289
    • Yang, Y.1    Kamel, M.S.2
  • 26
    • 0141860731 scopus 로고    scopus 로고
    • Cluster validity checking methods: Part II
    • Halkidi M., Batistakis Y., Vazirgiannis M.: Cluster validity checking methods: part II, SIGMOD Rec., 31, 2, 2002, pp. 40-45.
    • (2002) SIGMOD Rec. , vol.31 , Issue.2 , pp. 40-45
    • Halkidi, M.1    Batistakis, Y.2    Vazirgiannis, M.3
  • 28
    • 0017465567 scopus 로고
    • Effective information retrieval using term accuracy
    • Yu C. T., Salton G.: Effective Information Retrieval Using Term Accuracy, Communications of the ACM, 20, 3, 1977, pp. 135-142.
    • (1977) Communications of the ACM , vol.20 , Issue.3 , pp. 135-142
    • Yu, C.T.1    Salton, G.2
  • 30
    • 0000684645 scopus 로고
    • Breast cancer diagnosis and prognosis via linear programming
    • Mangasarian O. L., Street W. N., Wolberg W. H.: Breast cancer diagnosis and prognosis via linear programming, Operations Research, 43, 4, 1995, pp. 570-577.
    • (1995) Operations Research , vol.43 , Issue.4 , pp. 570-577
    • Mangasarian, O.L.1    Street, W.N.2    Wolberg, W.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.