-
4
-
-
28844466070
-
-
Taylor, R. J. K.; Reid, M.; Foot, J.; Raw, S. A. Acc. Chem. Res. 2005, 38, 851-869.
-
(2005)
Acc. Chem. Res.
, vol.38
, pp. 851-869
-
-
Taylor, R.J.K.1
Reid, M.2
Foot, J.3
Raw, S.A.4
-
5
-
-
70350187060
-
-
Soldatenkov, A. T.; Polyanskii, K. B.; Kolyadina, N. M.; Soldatova, S. A. Chem. Heterocycl. Compd. 2009, 45, 633-657.
-
(2009)
Chem. Heterocycl. Compd.
, vol.45
, pp. 633-657
-
-
Soldatenkov, A.T.1
Polyanskii, K.B.2
Kolyadina, N.M.3
Soldatova, S.A.4
-
6
-
-
0039934434
-
-
Wiberg, K. B., Ed.; Academic Press: New York
-
Wilberg, K. B. In Oxidation in Organic Chemistry. Wiberg, K. B., Ed.; Academic Press: New York, 1965. pp 69-84.
-
(1965)
Oxidation in Organic Chemistry
, pp. 69-84
-
-
Wilberg, K.B.1
-
11
-
-
33751391832
-
-
Choudhary, B. M.; Prasad, A. D.; Bhuma, V.; Swapna, V. J. Org. Chem. 1992, 57, 5841-5844.
-
(1992)
J. Org. Chem.
, vol.57
, pp. 5841-5844
-
-
Choudhary, B.M.1
Prasad, A.D.2
Bhuma, V.3
Swapna, V.4
-
12
-
-
0000482698
-
-
Pearson, A. J.; Chen, Y. S.; Hsu, S. Y.; Ray, T. Tetrahedron Lett. 1984, 25, 1235-1238.
-
(1984)
Tetrahedron Lett.
, vol.25
, pp. 1235-1238
-
-
Pearson, A.1
Chen, Y.2
Hsu, S.3
Ray, T.4
-
16
-
-
85066897001
-
-
and 133-167
-
Fatiadi, A. J. Synthesis 1976, 65-104. and 133-167.
-
(1976)
Synthesis
, pp. 65-104
-
-
Fatiadi, A.J.1
-
19
-
-
84874947405
-
-
Chem. Abstr. 1966, 66, 54653.
-
(1966)
Chem. Abstr
, vol.66
, pp. 54653
-
-
-
20
-
-
79551579063
-
-
Wang, H.-Q.; Yang, G.-F.; Li, Q.-Y.; Zhong, X.-X.; Wang, F.-P.; Li, Z.-S.; Li, Y.-H. New J. Chem. 2011, 35, 469-475.
-
(2011)
New J. Chem.
, vol.35
, pp. 469-475
-
-
Wang, H.-Q.1
Yang, G.-F.2
Li, Q.-Y.3
Zhong, X.-X.4
Wang, F.-P.5
Li, Z.-S.6
Li, Y.-H.7
-
21
-
-
37049166938
-
-
Attenburrow, J.; Cameron, A. F. B.; Chapman, J. H.; Evans, R. M.; Hems, B. A.; Jansen, A. B. A.; Walker, T. J. Chem. Soc. 1952, 1094-1111.
-
(1952)
Chem. Soc.
, pp. 1094-1111
-
-
Attenburrow, J.1
Cameron, A.F.B.2
Chapman, J.H.3
Evans, R.M.4
Hems, B.A.5
Jansen, A.B.A.6
Walker, T.J.7
-
22
-
-
84874949818
-
-
The temperature on the microwave oven was set at 105 -C, but due to the small quantities used and the design of the temperature probe holder assembly, the sensor did not actually contact the reactants. The temperature measured just above the reaction mixture, however, never exceeded 90 -C
-
The temperature on the microwave oven was set at 105 -C, but due to the small quantities used and the design of the temperature probe holder assembly, the sensor did not actually contact the reactants. The temperature measured just above the reaction mixture, however, never exceeded 90 -C.
-
-
-
-
23
-
-
84874950635
-
-
The TGA experiments were performed on synthetic MnO2 samples prepared according to the literature procedures followed by drying at 90 -C and 1 atm for 1 week. Commercial MnO2 was also dried at 90 -C and 1 atm for 1 week
-
The TGA experiments were performed on synthetic MnO2 samples prepared according to the literature procedures followed by drying at 90 -C and 1 atm for 1 week. Commercial MnO2 was also dried at 90 -C and 1 atm for 1 week.
-
-
-
-
24
-
-
0003514816
-
-
This reagent has been previously reported to contain 3-4% of firmly bound water John Wiley and Sons: New York
-
This reagent has been previously reported to contain 3-4% of firmly bound water, see Fieser, L. F.; Fieser, M. Reagents for Organic Synthesis. John Wiley and Sons: New York, 1967.
-
(1967)
Reagents for Organic Synthesis
-
-
Fieser, L.1
Fieser, M.2
-
25
-
-
84874947284
-
-
Khan, Y.; Durrani, S. K.; Mehmood, M.; Khan, M. R. J. Mater. Res. 2011, 26, 2268-2275.
-
(2011)
J. Mater. Res.
, vol.26
, pp. 2268-2275
-
-
Khan, Y.1
Durrani, S.K.2
Mehmood, M.3
Khan, M.R.4
-
26
-
-
85030496931
-
-
For optimum activity, the water must be adsorbed to the oxidant prior to the reaction.
-
For optimum activity, the water must be adsorbed to the oxidant prior to the reaction.
-
-
-
-
27
-
-
0003608528
-
-
Compounds were characterized by comparison with known spectra, see 1st ed.; Aldrich Chemical Co., . Compound, Volume, Spectra Number: 2a, 2 932B 2b 2 802A 2c 2 926C 2d 2 884C 2e 808C 2f 810C 2g 2 903B 2h 2 903C 2i 2 921A 2j see Supplementary data. 3a, 2, 1240A. 3b, 2, 1306C. 3c, see Ref. 15. 3d, 3,456B.
-
Compounds were characterized by comparison with known spectra, see Pouchert, C. J.; Behnke, J. The Aldrich Library of 13C and 1H FT NMR Spectra, 1st ed.; Aldrich Chemical Co., 1993. Compound, Volume, Spectra Number: 2a, 2, 932B. 2b, 2, 802A. 2c, 2, 926C. 2d, 2, 884C. 2e, 808C. 2f, 810C. 2g, 2, 903B. 2h, 2, 903C. 2i, 2, 921A 2j see Supplementary data. 3a, 2, 1240A. 3b, 2, 1306C. 3c, see Ref. 15. 3d, 3,456B.
-
(1993)
The Aldrich Library of 13C and 1H FT NMR Spectra
-
-
Pouchert, C.1
Behnke, J.2
-
28
-
-
73149115307
-
-
Pradham, P. P.; Bobbitt, J. M.; Bailey, W. F. J. Org. Chem. 2009, 74, 9524-9527.
-
(2009)
J. Org. Chem.
, vol.74
, pp. 9524-9527
-
-
Pradham, P.1
Bobbitt, J.2
Bailey, W.3
-
29
-
-
0000953787
-
-
Burnham, J. W.; Duncan, W. P.; Eisenbraun, E. J.; Keen, G. W.; Hamming, M. C. J. Org. Chem. 1974, 39, 1416-1420.
-
(1974)
J. Org. Chem.
, vol.39
, pp. 1416-1420
-
-
Burnham, J.W.1
Duncan, W.P.2
Eisenbraun, E.J.3
Keen, G.W.4
Hamming, M.C.5
-
31
-
-
67649981785
-
-
See Refs. 2f and 3c
-
See Refs. 2f and 3c. Bourne, C. R.; Bunce, R. A.; Bourne, P. C.; Berlin, K. D.; Barrow, E. W.; Barrow, W. W. Antimicrob. Agents Chemother. 2009, 53, 3065-3073.
-
(2009)
Antimicrob. Agents Chemother.
, vol.53
, pp. 3065-3073
-
-
Bourne, C.R.1
Bunce, R.A.2
Bourne, P.C.3
Berlin, K.D.4
Barrow, E.W.5
Barrow, W.6
-
32
-
-
84864409038
-
-
Nammalwar, B.; Bunce, R. A.; Berlin, K. D.; Bourne, C. R.; Bourne, P. C.; Barrow, E. W.; Barrow, W. W. Eur. J. Med. Chem. 2012, 54, 387-396.
-
(2012)
Eur. J. Med. Chem.
, vol.54
, pp. 387-396
-
-
Nammalwar, B.1
Bunce, R.2
Berlin, K.3
Bourne, C.4
Bourne, P.5
Barrow, E.6
Barrow, W.7
-
33
-
-
77956107320
-
-
Bourne, C. R.; Barrow, E. W.; Bunce, R. A.; Bourne, P. C.; Berlin, K. D.; Barrow, W. W. Antimicrob. Agents Chemother. 2010, 54, 3825-3833.
-
(2010)
Antimicrob. Agents Chemother.
, vol.54
, pp. 3825-3833
-
-
Bourne, C.R.1
Barrow, E.W.2
Bunce, R.A.3
Bourne, P.C.4
Berlin, K.D.5
Barrow, W.6
-
34
-
-
84874946142
-
-
Nammalwar, B.; Bourne, C. R.; Bunce, R. A.; Wakeham, N.; Bourne, P. C.; Ramnarayan, K.; Mylvaganam, S.; Berlin, K. D.; Barrow, E. W.; Barrow, W. W. ChemMedChem 2012, 7, 1474-1482.
-
(2012)
ChemMedChem
, vol.7
, pp. 1474-1482
-
-
Nammalwar, B.1
Bourne, C.R.2
Bunce, R.A.3
Wakeham, N.4
Bourne, P.C.5
Ramnarayan, K.6
Mylvaganam, S.7
Berlin, K.D.8
Barrow, E.W.9
Barrow, W.W.10
-
35
-
-
0014971437
-
-
Brossi, A.; Grunberg, E.; Hoffer, M.; Teitel, S. J. Med. Chem. 1971, 14, 58-59.
-
(1971)
J. Med. Chem.
, vol.14
, pp. 58-59
-
-
Brossi, A.1
Grunberg, E.2
Hoffer, M.3
Teitel, S.4
-
36
-
-
33745713221
-
-
Popov, V. M.; Chan, D. C. M.; Fallingham, Y. A.; Yee, W. A.; Wright, D. L.; Anderson, A. C. Bioorg. Med. Chem. Lett. 2006, 16, 4366-4370.
-
(2006)
Bioorg. Med. Chem. Lett.
, vol.16
, pp. 4366-4370
-
-
Popov, V.1
Chan, M.D.C.2
Fallingham, Y.3
Yee, W.4
Wright, D.5
Anderson, A.6
-
37
-
-
84986947049
-
-
When we repeated the procedure described by Brossi and co-workers using Attenburrow MnO2 in acetic acid (120 -C, 4 h) for the conversion of 1j to 2j, we obtained a 15% yield. It must be noted, however, that the source of the MnO2 used in these earlier references was not reported.
-
When we repeated the procedure described by Brossi and co-workers using Attenburrow MnO2 in acetic acid (120 -C, 4 h) for the conversion of 1j to 2j, we obtained a 15% yield. It must be noted, however, that the source of the MnO2 used in these earlier references was not reported. 20. (a) Knölker, H.-J. J. Prakt. Chem. 1995, 337, 75-77.
-
(1995)
J. Prakt. Chem.
, vol.337
, pp. 75-77
-
-
Knölker, H.-J.1
-
38
-
-
79960402602
-
-
Vicente-García, E.; Ramón, R.; Preciado, S.; Lavilla, R. Beilstein J. Org. Chem. 2011, 7, 980-987.
-
(2011)
Beilstein J. Org. Chem.
, vol.7
, pp. 980-987
-
-
Vicente-García, E.1
Ramón, R.2
Preciado, S.3
Lavilla, R.4
|