-
1
-
-
0030594439
-
Nonautonomous lotka-volterra systems, i
-
DOI 10.1006/jdeq.1996.0081
-
Redheffer R., Nonautonomous Lotka-Volterra systems. I. Journal of Differential Equations 1996 127 2 519 541 10.1006/jdeq.1996.0081 1389408 ZBL0856.34056 (Pubitemid 126160609)
-
(1996)
Journal of Differential Equations
, vol.127
, Issue.2
, pp. 519-541
-
-
Redheffer, R.1
-
2
-
-
0030595775
-
Nonautonomous Lotka-Volterra systems, II
-
DOI 10.1006/jdeq.1996.0168
-
Redheffer R., Nonautonomous Lotka-Volterra systems. II. Journal of Differential Equations 1996 132 1 1 20 10.1006/jdeq.1996.0168 1418497 ZBL0864.34043 (Pubitemid 126166044)
-
(1996)
Journal of Differential Equations
, vol.132
, Issue.1
, pp. 1-20
-
-
Redheffer, R.1
-
3
-
-
0029693002
-
On the asymptotic behavior of some population models, II
-
DOI 10.1006/jmaa.1996.0018
-
Tineo A., On the asymptotic behavior of some population models. II. Journal of Mathematical Analysis and Applications 1996 197 1 249 258 10.1006/jmaa.1996.0018 1371287 ZBL0872.34027 (Pubitemid 126166765)
-
(1996)
Journal of Mathematical Analysis and Applications
, vol.197
, Issue.1
, pp. 249-258
-
-
Tineo, A.1
-
4
-
-
0036496858
-
Nonautonomous Lotka-Volterra systems with delays
-
10.1006/jdeq.2001.4044 1885679 ZBL1013.34072
-
Teng Z. D., Nonautonomous Lotka-Volterra systems with delays. Journal of Differential Equations 2002 179 2 538 561 10.1006/jdeq.2001.4044 1885679 ZBL1013.34072
-
(2002)
Journal of Differential Equations
, vol.179
, Issue.2
, pp. 538-561
-
-
Teng, Z.D.1
-
5
-
-
33750800862
-
Global stability and asymptotically periodic solution for nonautonomous cooperative Lotka-Volterra diffusion system
-
DOI 10.1016/j.amc.2006.03.044, PII S0096300306003225
-
Wei F. Y., Ke W., Global stability and asymptotically periodic solution for nonautonomous cooperative Lotka-Volterra diffusion system. Applied Mathematics and Computation 2006 182 1 161 165 10.1016/j.amc.2006.03.044 2292028 ZBL1113.92062 (Pubitemid 44716282)
-
(2006)
Applied Mathematics and Computation
, vol.182
, Issue.1
, pp. 161-165
-
-
Fengying, W.1
Ke, W.2
-
6
-
-
70350741565
-
Permanence for nonautonomous Lotka-Volterra cooperative systems with delays
-
10.1016/j.nonrwa.2009.01.002 2570572 ZBL1186.34119
-
Nakata Y., Muroya Y., Permanence for nonautonomous Lotka-Volterra cooperative systems with delays. Nonlinear Analysis. Real World Applications 2010 11 1 528 534 10.1016/j.nonrwa.2009.01.002 2570572 ZBL1186.34119
-
(2010)
Nonlinear Analysis. Real World Applications
, vol.11
, Issue.1
, pp. 528-534
-
-
Nakata, Y.1
Muroya, Y.2
-
7
-
-
2342649489
-
On the persistence of a nonautonomous n -species Lotka-Volterra cooperative system
-
10.1016/S0096-3003(03)00605-2 2062784
-
Abdurahman X., Teng Z., On the persistence of a nonautonomous n -species Lotka-Volterra cooperative system. Applied Mathematics and Computation 2004 152 3 885 895 10.1016/S0096-3003(03)00605-2 2062784
-
(2004)
Applied Mathematics and Computation
, vol.152
, Issue.3
, pp. 885-895
-
-
Abdurahman, X.1
Teng, Z.2
-
8
-
-
77956972065
-
Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation
-
684926 10.1155/2010/684926 2670476 ZBL1204.34065
-
Ji C. Y., Jiang D. Q., Liu H., Yang Q. S., Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation. Mathematical Problems in Engineering 2010 2010 18 684926 10.1155/2010/684926 2670476 ZBL1204.34065
-
(2010)
Mathematical Problems in Engineering
, vol.2010
, pp. 18
-
-
Ji, C.Y.1
Jiang, D.Q.2
Liu, H.3
Yang, Q.S.4
-
9
-
-
84859534137
-
Persistence and non-persistence of a mutualism system with stochastic perturbation
-
10.3934/dcds.2012.32.867 2851882 ZBL1233.92076
-
Ji C. Y., Jiang D. Q., Persistence and non-persistence of a mutualism system with stochastic perturbation. Discrete and Continuous Dynamical Systems A 2012 32 3 867 889 10.3934/dcds.2012.32.867 2851882 ZBL1233.92076
-
(2012)
Discrete and Continuous Dynamical Systems A
, vol.32
, Issue.3
, pp. 867-889
-
-
Ji, C.Y.1
Jiang, D.Q.2
-
10
-
-
0242676984
-
Asymptotic behaviour of the stochastic Lotka-Volterra model
-
DOI 10.1016/S0022-247X(03)00539-0
-
Mao X. R., Sabanis S., Renshaw E., Asymptotic behaviour of the stochastic Lotka-Volterra model. Journal of Mathematical Analysis and Applications 2003 287 1 141 156 10.1016/S0022-247X(03)00539-0 2010262 ZBL1048.92027 (Pubitemid 37374125)
-
(2003)
Journal of Mathematical Analysis and Applications
, vol.287
, Issue.1
, pp. 141-156
-
-
Mao, X.1
Sabanis, S.2
Renshaw, E.3
-
11
-
-
14644388229
-
Stochastic differential delay equations of population dynamics
-
DOI 10.1016/j.jmaa.2004.09.027, PII S0022247X04007668
-
Mao X. R., Yuan C. G., Zou J. Z., Stochastic differential delay equations of population dynamics. Journal of Mathematical Analysis and Applications 2005 304 1 296 320 10.1016/j.jmaa.2004.09.027 2124664 ZBL1062.92055 (Pubitemid 40317335)
-
(2005)
Journal of Mathematical Analysis and Applications
, vol.304
, Issue.1
, pp. 296-320
-
-
Mao, X.1
Yuan, C.2
Zou, J.3
-
12
-
-
79960381828
-
Survival analysis of a stochastic cooperation system in a polluted environment
-
10.1142/S0218339011003877 2819510 ZBL1228.92074
-
Liu M., Wang K., Survival analysis of a stochastic cooperation system in a polluted environment. Journal of Biological Systems 2011 19 2 183 204 10.1142/S0218339011003877 2819510 ZBL1228.92074
-
(2011)
Journal of Biological Systems
, vol.19
, Issue.2
, pp. 183-204
-
-
Liu, M.1
Wang, K.2
-
13
-
-
12744262698
-
A note on nonautonomous logistic equation with random perturbation
-
10.1016/j.jmaa.2004.08.027 2113874 ZBL1076.34062
-
Jiang D. Q., Shi N. Z., A note on nonautonomous logistic equation with random perturbation. Journal of Mathematical Analysis and Applications 2005 303 1 164 172 10.1016/j.jmaa.2004.08.027 2113874 ZBL1076.34062
-
(2005)
Journal of Mathematical Analysis and Applications
, vol.303
, Issue.1
, pp. 164-172
-
-
Jiang, D.Q.1
Shi, N.Z.2
-
14
-
-
37449001667
-
Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation
-
10.1016/j.jmaa.2007.08.014 2376180 ZBL1140.60032
-
Jiang D. Q., Shi N. Z., Li X. Y., Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation. Journal of Mathematical Analysis and Applications 2008 340 1 588 597 10.1016/j.jmaa.2007.08.014 2376180 ZBL1140.60032
-
(2008)
Journal of Mathematical Analysis and Applications
, vol.340
, Issue.1
, pp. 588-597
-
-
Jiang, D.Q.1
Shi, N.Z.2
Li, X.Y.3
-
15
-
-
67650711514
-
Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation
-
10.3934/dcds.2009.24.523 2486589 ZBL1161.92048
-
Li X. Y., Mao X. R., Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete and Continuous Dynamical Systems A 2009 24 2 523 545 10.3934/dcds.2009.24.523 2486589 ZBL1161.92048
-
(2009)
Discrete and Continuous Dynamical Systems A
, vol.24
, Issue.2
, pp. 523-545
-
-
Li, X.Y.1
Mao, X.R.2
-
16
-
-
78149415331
-
Persistence and extinction in stochastic non-autonomous logistic systems
-
10.1016/j.jmaa.2010.09.058 2735535 ZBL1214.34045
-
Liu M., Wang K., Persistence and extinction in stochastic non-autonomous logistic systems. Journal of Mathematical Analysis and Applications 2011 375 2 443 457 10.1016/j.jmaa.2010.09.058 2735535 ZBL1214.34045
-
(2011)
Journal of Mathematical Analysis and Applications
, vol.375
, Issue.2
, pp. 443-457
-
-
Liu, M.1
Wang, K.2
-
17
-
-
84855200358
-
Asymptotic properties and simulations of a stochastic logistic model under regime switching II
-
10.1016/j.mcm.2011.08.019 2887385
-
Liu M., Wang K., Asymptotic properties and simulations of a stochastic logistic model under regime switching II. Mathematical and Computer Modelling 2012 55 3-4 405 418 10.1016/j.mcm.2011.08.019 2887385
-
(2012)
Mathematical and Computer Modelling
, vol.55
, Issue.3-4
, pp. 405-418
-
-
Liu, M.1
Wang, K.2
-
19
-
-
0242563961
-
Environmental Brownian noise suppresses explosions in population dynamics
-
DOI 10.1016/S0304-4149(01)00126-0, PII S0304414901001260
-
Mao X., Marion G., Renshaw E., Environmental Brownian noise suppresses explosions in population dynamics. Stochastic Processes and their Applications 2002 97 1 95 110 10.1016/S0304-4149(01)00126-0 1870962 ZBL1058.60046 (Pubitemid 40030718)
-
(2002)
Stochastic Processes and their Applications
, vol.97
, Issue.1
, pp. 95-110
-
-
Mao, X.1
Marion, G.2
Renshaw, E.3
-
21
-
-
0026265582
-
The threshold of survival for system of two species in a polluted environment
-
10.1007/BF00168006 1130788
-
Liu H. P., Ma Z. E., The threshold of survival for system of two species in a polluted environment. Journal of Mathematical Biology 1991 30 1 49 61 10.1007/BF00168006 1130788
-
(1991)
Journal of Mathematical Biology
, vol.30
, Issue.1
, pp. 49-61
-
-
Liu, H.P.1
Ma, Z.E.2
|