메뉴 건너뛰기




Volumn 2013, Issue , 2013, Pages

Persistence and Nonpersistence of a Nonautonomous Stochastic Mutualism System

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84874856449     PISSN: 10853375     EISSN: 16870409     Source Type: Journal    
DOI: 10.1155/2013/256249     Document Type: Article
Times cited : (28)

References (21)
  • 1
    • 0030594439 scopus 로고    scopus 로고
    • Nonautonomous lotka-volterra systems, i
    • DOI 10.1006/jdeq.1996.0081
    • Redheffer R., Nonautonomous Lotka-Volterra systems. I. Journal of Differential Equations 1996 127 2 519 541 10.1006/jdeq.1996.0081 1389408 ZBL0856.34056 (Pubitemid 126160609)
    • (1996) Journal of Differential Equations , vol.127 , Issue.2 , pp. 519-541
    • Redheffer, R.1
  • 2
    • 0030595775 scopus 로고    scopus 로고
    • Nonautonomous Lotka-Volterra systems, II
    • DOI 10.1006/jdeq.1996.0168
    • Redheffer R., Nonautonomous Lotka-Volterra systems. II. Journal of Differential Equations 1996 132 1 1 20 10.1006/jdeq.1996.0168 1418497 ZBL0864.34043 (Pubitemid 126166044)
    • (1996) Journal of Differential Equations , vol.132 , Issue.1 , pp. 1-20
    • Redheffer, R.1
  • 3
    • 0029693002 scopus 로고    scopus 로고
    • On the asymptotic behavior of some population models, II
    • DOI 10.1006/jmaa.1996.0018
    • Tineo A., On the asymptotic behavior of some population models. II. Journal of Mathematical Analysis and Applications 1996 197 1 249 258 10.1006/jmaa.1996.0018 1371287 ZBL0872.34027 (Pubitemid 126166765)
    • (1996) Journal of Mathematical Analysis and Applications , vol.197 , Issue.1 , pp. 249-258
    • Tineo, A.1
  • 4
    • 0036496858 scopus 로고    scopus 로고
    • Nonautonomous Lotka-Volterra systems with delays
    • 10.1006/jdeq.2001.4044 1885679 ZBL1013.34072
    • Teng Z. D., Nonautonomous Lotka-Volterra systems with delays. Journal of Differential Equations 2002 179 2 538 561 10.1006/jdeq.2001.4044 1885679 ZBL1013.34072
    • (2002) Journal of Differential Equations , vol.179 , Issue.2 , pp. 538-561
    • Teng, Z.D.1
  • 5
    • 33750800862 scopus 로고    scopus 로고
    • Global stability and asymptotically periodic solution for nonautonomous cooperative Lotka-Volterra diffusion system
    • DOI 10.1016/j.amc.2006.03.044, PII S0096300306003225
    • Wei F. Y., Ke W., Global stability and asymptotically periodic solution for nonautonomous cooperative Lotka-Volterra diffusion system. Applied Mathematics and Computation 2006 182 1 161 165 10.1016/j.amc.2006.03.044 2292028 ZBL1113.92062 (Pubitemid 44716282)
    • (2006) Applied Mathematics and Computation , vol.182 , Issue.1 , pp. 161-165
    • Fengying, W.1    Ke, W.2
  • 6
    • 70350741565 scopus 로고    scopus 로고
    • Permanence for nonautonomous Lotka-Volterra cooperative systems with delays
    • 10.1016/j.nonrwa.2009.01.002 2570572 ZBL1186.34119
    • Nakata Y., Muroya Y., Permanence for nonautonomous Lotka-Volterra cooperative systems with delays. Nonlinear Analysis. Real World Applications 2010 11 1 528 534 10.1016/j.nonrwa.2009.01.002 2570572 ZBL1186.34119
    • (2010) Nonlinear Analysis. Real World Applications , vol.11 , Issue.1 , pp. 528-534
    • Nakata, Y.1    Muroya, Y.2
  • 7
    • 2342649489 scopus 로고    scopus 로고
    • On the persistence of a nonautonomous n -species Lotka-Volterra cooperative system
    • 10.1016/S0096-3003(03)00605-2 2062784
    • Abdurahman X., Teng Z., On the persistence of a nonautonomous n -species Lotka-Volterra cooperative system. Applied Mathematics and Computation 2004 152 3 885 895 10.1016/S0096-3003(03)00605-2 2062784
    • (2004) Applied Mathematics and Computation , vol.152 , Issue.3 , pp. 885-895
    • Abdurahman, X.1    Teng, Z.2
  • 8
    • 77956972065 scopus 로고    scopus 로고
    • Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation
    • 684926 10.1155/2010/684926 2670476 ZBL1204.34065
    • Ji C. Y., Jiang D. Q., Liu H., Yang Q. S., Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation. Mathematical Problems in Engineering 2010 2010 18 684926 10.1155/2010/684926 2670476 ZBL1204.34065
    • (2010) Mathematical Problems in Engineering , vol.2010 , pp. 18
    • Ji, C.Y.1    Jiang, D.Q.2    Liu, H.3    Yang, Q.S.4
  • 9
    • 84859534137 scopus 로고    scopus 로고
    • Persistence and non-persistence of a mutualism system with stochastic perturbation
    • 10.3934/dcds.2012.32.867 2851882 ZBL1233.92076
    • Ji C. Y., Jiang D. Q., Persistence and non-persistence of a mutualism system with stochastic perturbation. Discrete and Continuous Dynamical Systems A 2012 32 3 867 889 10.3934/dcds.2012.32.867 2851882 ZBL1233.92076
    • (2012) Discrete and Continuous Dynamical Systems A , vol.32 , Issue.3 , pp. 867-889
    • Ji, C.Y.1    Jiang, D.Q.2
  • 10
    • 0242676984 scopus 로고    scopus 로고
    • Asymptotic behaviour of the stochastic Lotka-Volterra model
    • DOI 10.1016/S0022-247X(03)00539-0
    • Mao X. R., Sabanis S., Renshaw E., Asymptotic behaviour of the stochastic Lotka-Volterra model. Journal of Mathematical Analysis and Applications 2003 287 1 141 156 10.1016/S0022-247X(03)00539-0 2010262 ZBL1048.92027 (Pubitemid 37374125)
    • (2003) Journal of Mathematical Analysis and Applications , vol.287 , Issue.1 , pp. 141-156
    • Mao, X.1    Sabanis, S.2    Renshaw, E.3
  • 11
    • 14644388229 scopus 로고    scopus 로고
    • Stochastic differential delay equations of population dynamics
    • DOI 10.1016/j.jmaa.2004.09.027, PII S0022247X04007668
    • Mao X. R., Yuan C. G., Zou J. Z., Stochastic differential delay equations of population dynamics. Journal of Mathematical Analysis and Applications 2005 304 1 296 320 10.1016/j.jmaa.2004.09.027 2124664 ZBL1062.92055 (Pubitemid 40317335)
    • (2005) Journal of Mathematical Analysis and Applications , vol.304 , Issue.1 , pp. 296-320
    • Mao, X.1    Yuan, C.2    Zou, J.3
  • 12
    • 79960381828 scopus 로고    scopus 로고
    • Survival analysis of a stochastic cooperation system in a polluted environment
    • 10.1142/S0218339011003877 2819510 ZBL1228.92074
    • Liu M., Wang K., Survival analysis of a stochastic cooperation system in a polluted environment. Journal of Biological Systems 2011 19 2 183 204 10.1142/S0218339011003877 2819510 ZBL1228.92074
    • (2011) Journal of Biological Systems , vol.19 , Issue.2 , pp. 183-204
    • Liu, M.1    Wang, K.2
  • 13
    • 12744262698 scopus 로고    scopus 로고
    • A note on nonautonomous logistic equation with random perturbation
    • 10.1016/j.jmaa.2004.08.027 2113874 ZBL1076.34062
    • Jiang D. Q., Shi N. Z., A note on nonautonomous logistic equation with random perturbation. Journal of Mathematical Analysis and Applications 2005 303 1 164 172 10.1016/j.jmaa.2004.08.027 2113874 ZBL1076.34062
    • (2005) Journal of Mathematical Analysis and Applications , vol.303 , Issue.1 , pp. 164-172
    • Jiang, D.Q.1    Shi, N.Z.2
  • 14
    • 37449001667 scopus 로고    scopus 로고
    • Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation
    • 10.1016/j.jmaa.2007.08.014 2376180 ZBL1140.60032
    • Jiang D. Q., Shi N. Z., Li X. Y., Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation. Journal of Mathematical Analysis and Applications 2008 340 1 588 597 10.1016/j.jmaa.2007.08.014 2376180 ZBL1140.60032
    • (2008) Journal of Mathematical Analysis and Applications , vol.340 , Issue.1 , pp. 588-597
    • Jiang, D.Q.1    Shi, N.Z.2    Li, X.Y.3
  • 15
    • 67650711514 scopus 로고    scopus 로고
    • Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation
    • 10.3934/dcds.2009.24.523 2486589 ZBL1161.92048
    • Li X. Y., Mao X. R., Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete and Continuous Dynamical Systems A 2009 24 2 523 545 10.3934/dcds.2009.24.523 2486589 ZBL1161.92048
    • (2009) Discrete and Continuous Dynamical Systems A , vol.24 , Issue.2 , pp. 523-545
    • Li, X.Y.1    Mao, X.R.2
  • 16
    • 78149415331 scopus 로고    scopus 로고
    • Persistence and extinction in stochastic non-autonomous logistic systems
    • 10.1016/j.jmaa.2010.09.058 2735535 ZBL1214.34045
    • Liu M., Wang K., Persistence and extinction in stochastic non-autonomous logistic systems. Journal of Mathematical Analysis and Applications 2011 375 2 443 457 10.1016/j.jmaa.2010.09.058 2735535 ZBL1214.34045
    • (2011) Journal of Mathematical Analysis and Applications , vol.375 , Issue.2 , pp. 443-457
    • Liu, M.1    Wang, K.2
  • 17
    • 84855200358 scopus 로고    scopus 로고
    • Asymptotic properties and simulations of a stochastic logistic model under regime switching II
    • 10.1016/j.mcm.2011.08.019 2887385
    • Liu M., Wang K., Asymptotic properties and simulations of a stochastic logistic model under regime switching II. Mathematical and Computer Modelling 2012 55 3-4 405 418 10.1016/j.mcm.2011.08.019 2887385
    • (2012) Mathematical and Computer Modelling , vol.55 , Issue.3-4 , pp. 405-418
    • Liu, M.1    Wang, K.2
  • 19
    • 0242563961 scopus 로고    scopus 로고
    • Environmental Brownian noise suppresses explosions in population dynamics
    • DOI 10.1016/S0304-4149(01)00126-0, PII S0304414901001260
    • Mao X., Marion G., Renshaw E., Environmental Brownian noise suppresses explosions in population dynamics. Stochastic Processes and their Applications 2002 97 1 95 110 10.1016/S0304-4149(01)00126-0 1870962 ZBL1058.60046 (Pubitemid 40030718)
    • (2002) Stochastic Processes and their Applications , vol.97 , Issue.1 , pp. 95-110
    • Mao, X.1    Marion, G.2    Renshaw, E.3
  • 21
    • 0026265582 scopus 로고
    • The threshold of survival for system of two species in a polluted environment
    • 10.1007/BF00168006 1130788
    • Liu H. P., Ma Z. E., The threshold of survival for system of two species in a polluted environment. Journal of Mathematical Biology 1991 30 1 49 61 10.1007/BF00168006 1130788
    • (1991) Journal of Mathematical Biology , vol.30 , Issue.1 , pp. 49-61
    • Liu, H.P.1    Ma, Z.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.