메뉴 건너뛰기




Volumn 24, Issue 2, 2009, Pages 523-545

Population dynamical behavior of non-autonomous lotka-volterra competitive system with random perturbation

Author keywords

Brownian motion; Global attractivity; It 's formula; Sto Chastic permanence; Stochastic differential equation

Indexed keywords


EID: 67650711514     PISSN: 10780947     EISSN: None     Source Type: Journal    
DOI: 10.3934/dcds.2009.24.523     Document Type: Article
Times cited : (310)

References (34)
  • 1
    • 22844453576 scopus 로고    scopus 로고
    • Extinction of species in nonautonomous Lotka-Volterra system
    • S. Ahmad, Extinction of species in nonautonomous Lotka-Volterra system, Proc. Am. Math. Soc, 127 (1999), 2905-2910.
    • (1999) Proc. Am. Math. Soc , vol.127 , pp. 2905-2910
    • Ahmad, S.1
  • 2
    • 0034172677 scopus 로고    scopus 로고
    • Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system
    • S. Ahmad and A. C. Lazer, Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system, Nonlinear Anal., 40 (2000), 37-49.
    • (2000) Nonlinear Anal , vol.40 , pp. 37-49
    • Ahmad, S.1    Lazer, A.C.2
  • 4
    • 0018662325 scopus 로고
    • The influence of external real and white noise on the Lotka-Volterra model
    • L. Arnold, W. Horsthemke and J. W. Stucki, The influence of external real and white noise on the Lotka-Volterra model, Biometrical J., 21 (1979), 451-471.
    • (1979) Biometrical J , vol.21 , pp. 451-471
    • Arnold, L.1    Horsthemke, W.2    Stucki, J.W.3
  • 5
    • 1942508139 scopus 로고    scopus 로고
    • Stochastic delay Lotka-Volterra model
    • A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model, J. Math. Anal. Appl., 292 (2004), 364-380.
    • (2004) J. Math. Anal. Appl , vol.292 , pp. 364-380
    • Bahar, A.1    Mao, X.2
  • 6
    • 24344490836 scopus 로고    scopus 로고
    • Stochastic delay population dynamics, International J
    • A. Bahar and X. Mao, Stochastic delay population dynamics, International J. Pure and Applied in Math., 11 (2004), 377-400.
    • (2004) Pure and Applied in Math , vol.11 , pp. 377-400
    • Bahar, A.1    Mao, X.2
  • 7
    • 84978933417 scopus 로고    scopus 로고
    • Persistence and periodic orbits for two-species non-autonomous diffusion Lotka- Volterra models
    • P. Chen, Persistence and periodic orbits for two-species non-autonomous diffusion Lotka- Volterra models, Appl. Math. J. Chin. Univ. Ser. B., 19 (2004), 359-366.
    • (2004) Appl. Math. J. Chin. Univ. Ser. B , Issue.359-366 , pp. 19
    • Chen, P.1
  • 9
    • 33845594571 scopus 로고    scopus 로고
    • Existence, uniqueness, stochastic persistence and global stability of positive solutions of the logistic equation with random perturbation
    • C. Ji, D. Jiang, N. Shi and D. O'Regan, Existence, uniqueness, stochastic persistence and global stability of positive solutions of the logistic equation with random perturbation, Mathematical Methods in Applied Science, 30 (2007), 77-89.
    • (2007) Mathematical Methods in Applied Science , vol.30 , pp. 77-89
    • Ji, C.1    Jiang, D.2    Shi, N.3    O'Regan, D.4
  • 10
    • 12744262698 scopus 로고    scopus 로고
    • A note on nonautonomous logistic equation with random perturbation
    • D. Jiang and N. Shi, A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303 (2005), 164-172.
    • (2005) J. Math. Anal. Appl , vol.303 , pp. 164-172
    • Jiang, D.1    Shi, N.2
  • 11
    • 37449001667 scopus 로고    scopus 로고
    • Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation
    • D. Jiang, N. Shi and X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 340 (2008), 588-597.
    • (2008) J. Math. Anal. Appl , vol.340 , pp. 588-597
    • Jiang, D.1    Shi, N.2    Li, X.3
  • 12
    • 28844437700 scopus 로고    scopus 로고
    • Existence, uniqueness, and global stability of positive solutions to the food-limited population model with random perturbation
    • D. Jiang, N. Shi and Y. Zhao, Existence, uniqueness, and global stability of positive solutions to the food-limited population model with random perturbation, Mathematical and Computer Modeling, 42 (2005), 651-658.
    • (2005) Mathematical and Computer Modeling , vol.42 , pp. 651-658
    • Jiang, D.1    Shi, N.2    Zhao, Y.3
  • 13
    • 4344689629 scopus 로고
    • Persistence in stochastic food web models
    • T. C. Gard, Persistence in stochastic food web models, Bull. Math. Biol., 46 (1984), 357-370.
    • (1984) Bull. Math. Biol , vol.46 , pp. 357-370
    • Gard, T.C.1
  • 14
    • 38249040858 scopus 로고
    • Stability for multispecies population models in random environments
    • T. C. Gard, Stability for multispecies population models in random environments, J. Nonlinear Analysis: Theory, Meth. Appl., 10 (1986), 1411-1419.
    • (1986) J. Nonlinear Analysis: Theory, Meth. Appl , vol.10 , pp. 1411-1419
    • Gard, T.C.1
  • 16
    • 0021226979 scopus 로고
    • Global asymptotic stability in Volterra's population systems
    • K. Golpalsamy, Global asymptotic stability in Volterra's population systems, J. Math. Biol., 19 (1984), 157-168.
    • (1984) J. Math. Biol , vol.19 , pp. 157-168
    • Golpalsamy, K.1
  • 18
    • 67650782928 scopus 로고    scopus 로고
    • R. Z. Khasminskii, Stochastic Stability of Differential Equations, Alphen: Sijtjoff and No-ordhoff, 1980. (translationi of the Russian edition, Moscow, Nauka, 1969.)
    • R. Z. Khasminskii, "Stochastic Stability of Differential Equations," Alphen: Sijtjoff and No-ordhoff, 1980. (translationi of the Russian edition, Moscow, Nauka, 1969.)
  • 20
    • 0035413567 scopus 로고    scopus 로고
    • Long term behavior of solutions of the Lotka-Volterra system under small random perturbations
    • R. Z. Khasminskii and F. C. Klebaner, Long term behavior of solutions of the Lotka-Volterra system under small random perturbations, Ann. Appl. Probab., 11 (2001), 952-963.
    • (2001) Ann. Appl. Probab , vol.11 , pp. 952-963
    • Khasminskii, R.Z.1    Klebaner, F.C.2
  • 22
    • 0036537615 scopus 로고    scopus 로고
    • A note on the Lasalle-type theorems for stochastic differential delay equation
    • X. Mao, A note on the Lasalle-type theorems for stochastic differential delay equation, J. Math. Anal. Appl., 268 (2002), 125-142.
    • (2002) J. Math. Anal. Appl , vol.268 , pp. 125-142
    • Mao, X.1
  • 23
    • 33746315382 scopus 로고    scopus 로고
    • Delay population dynamics and environmental noise
    • X. Mao, Delay population dynamics and environmental noise, Stochastics and Dynamics, 5 (2005), 149-162.
    • (2005) Stochastics and Dynamics , vol.5 , pp. 149-162
    • Mao, X.1
  • 25
    • 0242563961 scopus 로고    scopus 로고
    • Environmental Brownian noise suppresses explosions in Population dynamics
    • X. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in Population dynamics, Stochastic Processes and their Applications, 97 (2002), 95-110.
    • (2002) Stochastic Processes and their Applications , vol.97 , pp. 95-110
    • Mao, X.1    Marion, G.2    Renshaw, E.3
  • 26
    • 0242676984 scopus 로고    scopus 로고
    • Asymptotic behavior of the sochastic Lotka-Volterra model
    • X. Mao, G. Marion and E. Renshaw, Asymptotic behavior of the sochastic Lotka-Volterra model, J. Math. Anal. Appl., 287 (2003), 141-156.
    • (2003) J. Math. Anal. Appl , vol.287 , pp. 141-156
    • Mao, X.1    Marion, G.2    Renshaw, E.3
  • 28
    • 21444434953 scopus 로고    scopus 로고
    • Extinction in nonautonomous compettitive Lotka-Volterrasystems
    • F. Montesf de Oca and M. L. Zeeman, Extinction in nonautonomous compettitive Lotka-Volterrasystems, Proc. Am. Math. Soc, 124 (1996), 3677-3687.
    • (1996) Proc. Am. Math. Soc , vol.124 , pp. 3677-3687
    • Montesf de Oca, F.1    Zeeman, M.L.2
  • 31
    • 48249119607 scopus 로고    scopus 로고
    • Almost sure stability of some stochastic dynamical systems with memory
    • A. Rodkina, H. Schurz and L. Shaikhet, Almost sure stability of some stochastic dynamical systems with memory, Discrete Contin. Dyn. Syst., 21 (2008), 571-593.
    • (2008) Discrete Contin. Dyn. Syst , vol.21 , pp. 571-593
    • Rodkina, A.1    Schurz, H.2    Shaikhet, L.3
  • 32
    • 0039592797 scopus 로고    scopus 로고
    • On the non-autonomous Lotka-Volterra N-species competing systems
    • Z. Teng, On the non-autonomous Lotka-Volterra N-species competing systems, Appl. Math. Comput., 114 (2000), 175-185.
    • (2000) Appl. Math. Comput , vol.114 , pp. 175-185
    • Teng, Z.1
  • 33
    • 7244224959 scopus 로고    scopus 로고
    • Average conditions for permanence and extinction in nonautonomous Lotka-Volterra system
    • J. Zhao and J. Jiang, Average conditions for permanence and extinction in nonautonomous Lotka-Volterra system, J. Math. Anal. Appl., 229 (2004), 663-675.
    • (2004) J. Math. Anal. Appl , vol.229 , pp. 663-675
    • Zhao, J.1    Jiang, J.2
  • 34
    • 0142087731 scopus 로고    scopus 로고
    • The permanence and global attractivity in a nonautonomous Lotka-Volterra system, Nonlinear Anal
    • J. Zhao, J. Jiang and A. Lazer, The permanence and global attractivity in a nonautonomous Lotka-Volterra system, Nonlinear Anal.: Real World Applications, 5 (2004), 265-276.
    • (2004) Real World Applications , vol.5 , pp. 265-276
    • Zhao, J.1    Jiang, J.2    Lazer, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.