-
1
-
-
22844453576
-
Extinction of species in nonautonomous Lotka-Volterra system
-
S. Ahmad, Extinction of species in nonautonomous Lotka-Volterra system, Proc. Am. Math. Soc, 127 (1999), 2905-2910.
-
(1999)
Proc. Am. Math. Soc
, vol.127
, pp. 2905-2910
-
-
Ahmad, S.1
-
2
-
-
0034172677
-
Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system
-
S. Ahmad and A. C. Lazer, Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system, Nonlinear Anal., 40 (2000), 37-49.
-
(2000)
Nonlinear Anal
, vol.40
, pp. 37-49
-
-
Ahmad, S.1
Lazer, A.C.2
-
4
-
-
0018662325
-
The influence of external real and white noise on the Lotka-Volterra model
-
L. Arnold, W. Horsthemke and J. W. Stucki, The influence of external real and white noise on the Lotka-Volterra model, Biometrical J., 21 (1979), 451-471.
-
(1979)
Biometrical J
, vol.21
, pp. 451-471
-
-
Arnold, L.1
Horsthemke, W.2
Stucki, J.W.3
-
5
-
-
1942508139
-
Stochastic delay Lotka-Volterra model
-
A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model, J. Math. Anal. Appl., 292 (2004), 364-380.
-
(2004)
J. Math. Anal. Appl
, vol.292
, pp. 364-380
-
-
Bahar, A.1
Mao, X.2
-
6
-
-
24344490836
-
Stochastic delay population dynamics, International J
-
A. Bahar and X. Mao, Stochastic delay population dynamics, International J. Pure and Applied in Math., 11 (2004), 377-400.
-
(2004)
Pure and Applied in Math
, vol.11
, pp. 377-400
-
-
Bahar, A.1
Mao, X.2
-
7
-
-
84978933417
-
Persistence and periodic orbits for two-species non-autonomous diffusion Lotka- Volterra models
-
P. Chen, Persistence and periodic orbits for two-species non-autonomous diffusion Lotka- Volterra models, Appl. Math. J. Chin. Univ. Ser. B., 19 (2004), 359-366.
-
(2004)
Appl. Math. J. Chin. Univ. Ser. B
, Issue.359-366
, pp. 19
-
-
Chen, P.1
-
9
-
-
33845594571
-
Existence, uniqueness, stochastic persistence and global stability of positive solutions of the logistic equation with random perturbation
-
C. Ji, D. Jiang, N. Shi and D. O'Regan, Existence, uniqueness, stochastic persistence and global stability of positive solutions of the logistic equation with random perturbation, Mathematical Methods in Applied Science, 30 (2007), 77-89.
-
(2007)
Mathematical Methods in Applied Science
, vol.30
, pp. 77-89
-
-
Ji, C.1
Jiang, D.2
Shi, N.3
O'Regan, D.4
-
10
-
-
12744262698
-
A note on nonautonomous logistic equation with random perturbation
-
D. Jiang and N. Shi, A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303 (2005), 164-172.
-
(2005)
J. Math. Anal. Appl
, vol.303
, pp. 164-172
-
-
Jiang, D.1
Shi, N.2
-
11
-
-
37449001667
-
Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation
-
D. Jiang, N. Shi and X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 340 (2008), 588-597.
-
(2008)
J. Math. Anal. Appl
, vol.340
, pp. 588-597
-
-
Jiang, D.1
Shi, N.2
Li, X.3
-
12
-
-
28844437700
-
Existence, uniqueness, and global stability of positive solutions to the food-limited population model with random perturbation
-
D. Jiang, N. Shi and Y. Zhao, Existence, uniqueness, and global stability of positive solutions to the food-limited population model with random perturbation, Mathematical and Computer Modeling, 42 (2005), 651-658.
-
(2005)
Mathematical and Computer Modeling
, vol.42
, pp. 651-658
-
-
Jiang, D.1
Shi, N.2
Zhao, Y.3
-
13
-
-
4344689629
-
Persistence in stochastic food web models
-
T. C. Gard, Persistence in stochastic food web models, Bull. Math. Biol., 46 (1984), 357-370.
-
(1984)
Bull. Math. Biol
, vol.46
, pp. 357-370
-
-
Gard, T.C.1
-
14
-
-
38249040858
-
Stability for multispecies population models in random environments
-
T. C. Gard, Stability for multispecies population models in random environments, J. Nonlinear Analysis: Theory, Meth. Appl., 10 (1986), 1411-1419.
-
(1986)
J. Nonlinear Analysis: Theory, Meth. Appl
, vol.10
, pp. 1411-1419
-
-
Gard, T.C.1
-
16
-
-
0021226979
-
Global asymptotic stability in Volterra's population systems
-
K. Golpalsamy, Global asymptotic stability in Volterra's population systems, J. Math. Biol., 19 (1984), 157-168.
-
(1984)
J. Math. Biol
, vol.19
, pp. 157-168
-
-
Golpalsamy, K.1
-
18
-
-
67650782928
-
-
R. Z. Khasminskii, Stochastic Stability of Differential Equations, Alphen: Sijtjoff and No-ordhoff, 1980. (translationi of the Russian edition, Moscow, Nauka, 1969.)
-
R. Z. Khasminskii, "Stochastic Stability of Differential Equations," Alphen: Sijtjoff and No-ordhoff, 1980. (translationi of the Russian edition, Moscow, Nauka, 1969.)
-
-
-
-
20
-
-
0035413567
-
Long term behavior of solutions of the Lotka-Volterra system under small random perturbations
-
R. Z. Khasminskii and F. C. Klebaner, Long term behavior of solutions of the Lotka-Volterra system under small random perturbations, Ann. Appl. Probab., 11 (2001), 952-963.
-
(2001)
Ann. Appl. Probab
, vol.11
, pp. 952-963
-
-
Khasminskii, R.Z.1
Klebaner, F.C.2
-
22
-
-
0036537615
-
A note on the Lasalle-type theorems for stochastic differential delay equation
-
X. Mao, A note on the Lasalle-type theorems for stochastic differential delay equation, J. Math. Anal. Appl., 268 (2002), 125-142.
-
(2002)
J. Math. Anal. Appl
, vol.268
, pp. 125-142
-
-
Mao, X.1
-
23
-
-
33746315382
-
Delay population dynamics and environmental noise
-
X. Mao, Delay population dynamics and environmental noise, Stochastics and Dynamics, 5 (2005), 149-162.
-
(2005)
Stochastics and Dynamics
, vol.5
, pp. 149-162
-
-
Mao, X.1
-
25
-
-
0242563961
-
Environmental Brownian noise suppresses explosions in Population dynamics
-
X. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in Population dynamics, Stochastic Processes and their Applications, 97 (2002), 95-110.
-
(2002)
Stochastic Processes and their Applications
, vol.97
, pp. 95-110
-
-
Mao, X.1
Marion, G.2
Renshaw, E.3
-
26
-
-
0242676984
-
Asymptotic behavior of the sochastic Lotka-Volterra model
-
X. Mao, G. Marion and E. Renshaw, Asymptotic behavior of the sochastic Lotka-Volterra model, J. Math. Anal. Appl., 287 (2003), 141-156.
-
(2003)
J. Math. Anal. Appl
, vol.287
, pp. 141-156
-
-
Mao, X.1
Marion, G.2
Renshaw, E.3
-
28
-
-
21444434953
-
Extinction in nonautonomous compettitive Lotka-Volterrasystems
-
F. Montesf de Oca and M. L. Zeeman, Extinction in nonautonomous compettitive Lotka-Volterrasystems, Proc. Am. Math. Soc, 124 (1996), 3677-3687.
-
(1996)
Proc. Am. Math. Soc
, vol.124
, pp. 3677-3687
-
-
Montesf de Oca, F.1
Zeeman, M.L.2
-
31
-
-
48249119607
-
Almost sure stability of some stochastic dynamical systems with memory
-
A. Rodkina, H. Schurz and L. Shaikhet, Almost sure stability of some stochastic dynamical systems with memory, Discrete Contin. Dyn. Syst., 21 (2008), 571-593.
-
(2008)
Discrete Contin. Dyn. Syst
, vol.21
, pp. 571-593
-
-
Rodkina, A.1
Schurz, H.2
Shaikhet, L.3
-
32
-
-
0039592797
-
On the non-autonomous Lotka-Volterra N-species competing systems
-
Z. Teng, On the non-autonomous Lotka-Volterra N-species competing systems, Appl. Math. Comput., 114 (2000), 175-185.
-
(2000)
Appl. Math. Comput
, vol.114
, pp. 175-185
-
-
Teng, Z.1
-
33
-
-
7244224959
-
Average conditions for permanence and extinction in nonautonomous Lotka-Volterra system
-
J. Zhao and J. Jiang, Average conditions for permanence and extinction in nonautonomous Lotka-Volterra system, J. Math. Anal. Appl., 229 (2004), 663-675.
-
(2004)
J. Math. Anal. Appl
, vol.229
, pp. 663-675
-
-
Zhao, J.1
Jiang, J.2
-
34
-
-
0142087731
-
The permanence and global attractivity in a nonautonomous Lotka-Volterra system, Nonlinear Anal
-
J. Zhao, J. Jiang and A. Lazer, The permanence and global attractivity in a nonautonomous Lotka-Volterra system, Nonlinear Anal.: Real World Applications, 5 (2004), 265-276.
-
(2004)
Real World Applications
, vol.5
, pp. 265-276
-
-
Zhao, J.1
Jiang, J.2
Lazer, A.3
|