메뉴 건너뛰기




Volumn 100, Issue 1, 2013, Pages 139-156

Covariate-adjusted precision matrix estimation with an application in genetical genomics

Author keywords

Constrained 1 penalization; Gaussian graphical model; High dimensionality; Multivariate regression

Indexed keywords


EID: 84874781352     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/ass058     Document Type: Article
Times cited : (105)

References (25)
  • 1
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • BICKEL, P. & LEVINA, L. (2008). Covariance regularization by thresholding. Ann. Statist. 6, 2577-604.
    • (2008) Ann. Statist , vol.6 , pp. 2577-2604
    • Bickel, P.1    Levina, L.2
  • 2
    • 13444306165 scopus 로고    scopus 로고
    • The landscape of genetic complexity across 5,700 gene expression traits in yeast
    • BREM, R. & KRUGLYAK, L. (2005). The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Nat. Acad. Sci. 102, 1572-7.
    • (2005) Proc. Nat. Acad. Sci , vol.102 , pp. 1572-1577
    • Brem, R.1    Kruglyak, L.2
  • 3
    • 79960133776 scopus 로고    scopus 로고
    • Adaptive thresholding for sparse covariance matrix estimation
    • CAI, T. & LIU, W. (2011). Adaptive thresholding for sparse covariance matrix estimation. J. Am. Statist. Assoc. 106, 672-84.
    • (2011) J. Am. Statist. Assoc , vol.106 , pp. 672-684
    • Cai, T.1    Liu, W.2
  • 4
    • 79960110811 scopus 로고    scopus 로고
    • A constrained -1 minimization approach to sparse precision matrix estimation
    • CAI, T., LIU, W. & LUO, X. (2011). A constrained 1 minimization approach to sparse precision matrix estimation. J. Am. Statist. Assoc. 106, 594-607.
    • (2011) J. Am. Statist. Assoc , vol.106 , pp. 594-607
    • Cai, T.1    Liu, W.2    Luo, X.3
  • 5
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger thann
    • CANDES, E. & TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35, 2313-51.
    • (2007) Ann. Statist , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 6
    • 0036899513 scopus 로고    scopus 로고
    • The genetics of variation in gene expression
    • CHEUNG, V. & SPIELMAN, R. (2002). The genetics of variation in gene expression. Nature Genet. 32, 522-5.
    • (2002) Nature Genet , vol.32 , pp. 522-525
    • Cheung, V.1    Spielman, R.2
  • 7
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • FRIEDMAN, J. H., HASTIE, T. J. & TIBSHIRANI, R. J. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432-41.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.H.1    Hastie, T.J.2    Tibshirani, R.J.3
  • 8
    • 75549090213 scopus 로고    scopus 로고
    • KEGG for representation and analysis of molecular networks involving diseases and drugs
    • KANEHISA, M., GOTO, S., FURUMICHI, M., TANABE, M. & HIRAKAWA, M. (2010). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38, D335-60.
    • (2010) Nucleic Acids Res , vol.38
    • Kanehisa, M.1    Goto, S.2    Furumichi, M.3    Tanabe, M.4    Hirakawa, M.5
  • 10
    • 84862854053 scopus 로고    scopus 로고
    • Sparse estimation of conditional graphical models with application to gene networks
    • LI, B., CHUN, H. & ZHAO, H. (2012). Sparse estimation of conditional graphical models with application to gene networks. J. Am. Statist. Assoc. 107, 152-67.
    • (2012) J. Am. Statist. Assoc , vol.107 , pp. 152-167
    • Li, B.1    Chun, H.2    Zhao, H.3
  • 11
    • 33645568358 scopus 로고    scopus 로고
    • Gradient directed regularization for sparse gaussian concentration graphs with applications to inference of genetic networks
    • LI, H. & GUI, J. (2006). Gradient directed regularization for sparse gaussian concentration graphs with applications to inference of genetic networks. Biostatistics 7, 302-17.
    • (2006) Biostatistics , vol.7 , pp. 302-317
    • Li, H.1    Gui, J.2
  • 12
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • MEINSHAUSEN, N. & B?UHLMANN, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34, 1436-62.
    • (2006) Ann. Statist , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 14
    • 79551607002 scopus 로고    scopus 로고
    • Support union recovery in high-dimensional multivariate regression
    • OBOZINSKI, G., WAINWRIGHT, M. & JORDAN, M. (2011). Support union recovery in high-dimensional multivariate regression. Ann. Statist. 39, 1-47.
    • (2011) Ann. Statist , vol.39 , pp. 1-47
    • Obozinski, G.1    Wainwright, M.2    Jordan, M.3
  • 15
    • 66549116888 scopus 로고    scopus 로고
    • Partial correlation estimation by joint sparse regression models
    • PENG, J.,WANG, P., ZHOU, N. & ZHU, J. (2009a). Partial correlation estimation by joint sparse regression models. J. Am. Statist. Assoc. 104, 735-46.
    • (2009) J. Am. Statist. Assoc , vol.104 , pp. 735-746
    • Peng, J.1    Wang, P.2    Zhou, N.3    Zhu, J.4
  • 18
    • 62349119614 scopus 로고    scopus 로고
    • Sparse permutation invariant covariance estimation
    • ROTHMAN, A.,BICKEL, P., LEVINA, E. & ZHU, J. (2008). Sparse permutation invariant covariance estimation. Electron. J. Statist. 2, 494-515.
    • (2008) Electron. J. Statist , vol.2 , pp. 494-515
    • Rothman, A.1    Bickel, P.2    Levina, E.3    Zhu, J.4
  • 19
    • 79952797027 scopus 로고    scopus 로고
    • Sparse multivariate regression with covariate estimation
    • ROTHMAN, A., LEVINA, E. & ZHU, J. (2010). Sparse multivariate regression with covariate estimation. J. Comp. Graph. Statist. 19, 947-62.
    • (2010) J. Comp. Graph. Statist , vol.19 , pp. 947-962
    • Rothman, A.1    Levina, E.2    Zhu, J.3
  • 20
    • 20044388557 scopus 로고    scopus 로고
    • From signatures to models: Understanding cancer using microarrays
    • SEGAL, E., FRIEDMAN, N.,KAMINSKI, N.,REGEV, A. & KOLLER, D. (2005). From signatures to models: Understanding cancer using microarrays. Nature Genet. 37, S38-45.
    • (2005) Nature Genet , vol.37
    • Segal, E.1    Friedman, N.2    Kaminski, N.3    Regev, A.4    Koller, D.5
  • 22
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • TIBSHIRANI, R. J. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267-88.
    • (1996) J. R. Statist. Soc , vol.58 , pp. 267-288
    • Tibshirani, R.J.1
  • 24
    • 84860352230 scopus 로고    scopus 로고
    • A sparse conditional Gaussian graphical model for analysis of genetic genomics data
    • YIN, J. & LI, H. (2011). A sparse conditional Gaussian graphical model for analysis of genetic genomics data. Ann. Appl. Statist. 5, 2630-50.
    • (2011) Ann. Appl. Statist , vol.5 , pp. 2630-2650
    • Yin, J.1    Li, H.2
  • 25
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • YUAN, M. & LIN, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika 94, 19-35.
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.