메뉴 건너뛰기




Volumn 8, Issue 3, 2013, Pages

Improved Classification of Lung Cancer Tumors Based on Structural and Physicochemical Properties of Proteins Using Data Mining Models

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ARTICLE; BAYESIAN LEARNING; CANCER CLASSIFICATION; CLASSIFICATION ALGORITHM; CLINICAL FEATURE; CLUSTER ANALYSIS; CONTROLLED STUDY; DATA MINING; HYDROPHOBICITY; LUNG CANCER; LUNG NON SMALL CELL CANCER; LUNG SMALL CELL CANCER; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; MICROARRAY ANALYSIS; ONCOGENE; PHYSICAL CHEMISTRY; POLARIZATION; PREDICTION; PROTEIN STRUCTURE; SEQUENCE ANALYSIS; STRATEGIC PLANNING; VALIDATION PROCESS;

EID: 84874691692     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0058772     Document Type: Article
Times cited : (41)

References (75)
  • 1
    • 84864070170 scopus 로고    scopus 로고
    • Classification of Lung Cancer Tumors Based on Structural and Physicochemical Properties of Proteins by Bioinformatics Models
    • doi: 10.1371/journal.pone.0040017
    • Hosseinzadeh F, Ebrahimi M, Goliaei B, Shamabadi N, (2012) Classification of Lung Cancer Tumors Based on Structural and Physicochemical Properties of Proteins by Bioinformatics Models. PLoS ONE 7(7): e40017 doi:10.1371/journal.pone.0040017.
    • (2012) PLoS ONE , vol.7 , Issue.7
    • Hosseinzadeh, F.1    Ebrahimi, M.2    Goliaei, B.3    Shamabadi, N.4
  • 2
    • 84874721867 scopus 로고    scopus 로고
    • American Cancer Society, Accessed: 2012 December 15
    • American Cancer Society. Available: www.cancer.org/research/cancerfactsfigures/acspc-031941. Accessed: 2012 December 15.
  • 3
    • 84874718604 scopus 로고    scopus 로고
    • Lung Cancer Alliance website, Accessed: 2012 December 10
    • Lung Cancer Alliance website. Available: www.lungcanceralliance.org. Accessed: 2012 December 10.
  • 4
    • 84861650468 scopus 로고    scopus 로고
    • Overexpression of TRIM24 Correlates with Tumor Progression in Non-Small Cell Lung Cancer
    • doi: 10.1371/journal.pone.0037657
    • Li H, Sun L, Tang Z, Fu L, Xu Y, et al. (2012) Overexpression of TRIM24 Correlates with Tumor Progression in Non-Small Cell Lung Cancer. PLoS ONE 7(5): e37657 doi:10.1371/journal.pone.0037657.
    • (2012) PLoS ONE , vol.7 , Issue.5
    • Li, H.1    Sun, L.2    Tang, Z.3    Fu, L.4    Xu, Y.5
  • 5
    • 84859611365 scopus 로고    scopus 로고
    • Protein Signature of Lung Cancer Tissues
    • doi: 10.1371/journal.pone.0035157
    • Mehan MR, Ayers D, Thirstrup D, Xiong W, Ostroff RM, et al. (2012) Protein Signature of Lung Cancer Tissues. PLoS ONE 7(4): e35157 doi:10.1371/journal.pone.0035157.
    • (2012) PLoS ONE , vol.7 , Issue.4
    • Mehan, M.R.1    Ayers, D.2    Thirstrup, D.3    Xiong, W.4    Ostroff, R.M.5
  • 6
    • 84857410524 scopus 로고    scopus 로고
    • A Novel Classification of Lung Cancer into Molecular Subtypes
    • doi: 10.1371/journal.pone.0031906
    • West L, Vidwans SJ, Campbell NP, Shrager J, Simon GR, et al. (2012) A Novel Classification of Lung Cancer into Molecular Subtypes. PLoS ONE 7(2): e31906 doi:10.1371/journal.pone.0031906.
    • (2012) PLoS ONE , vol.7 , Issue.2
    • West, L.1    Vidwans, S.J.2    Campbell, N.P.3    Shrager, J.4    Simon, G.R.5
  • 7
    • 77956418156 scopus 로고    scopus 로고
    • Gene Expression-Based Classification of Non-Small Cell Lung Carcinomas and Survival Prediction
    • doi: 10.1371/journal.pone.0010312
    • Hou J, Aerts J, Den Hamer B, Van IJcken W, Den Bakker M, et al. (2010) Gene Expression-Based Classification of Non-Small Cell Lung Carcinomas and Survival Prediction. PLoS ONE 5(4): e10312 doi:10.1371/journal.pone.0010312.
    • (2010) PLoS ONE , vol.5 , Issue.4
    • Hou, J.1    Aerts, J.2    Den Hamer, B.3    Van Ijcken, W.4    Den Bakker, M.5
  • 8
    • 84858820763 scopus 로고    scopus 로고
    • A Classification Method Based on Principal Components of SELDI Spectra to Diagnose of Lung Adenocarcinoma
    • doi: 10.1371/journal.pone.0034457
    • Lin Q, Peng Q, Yao F, Pan X-F, Xiong L-W, et al. (2012) A Classification Method Based on Principal Components of SELDI Spectra to Diagnose of Lung Adenocarcinoma. PLoS ONE 7(3): e34457 doi:10.1371/journal.pone.0034457.
    • (2012) PLoS ONE , vol.7 , Issue.3
    • Lin, Q.1    Peng, Q.2    Yao, F.3    Pan, X.-F.4    Xiong, L.-W.5
  • 9
    • 78650982063 scopus 로고    scopus 로고
    • Improving Cancer Classification Accuracy Using Gene Pairs
    • doi: 10.1371/journal.pone.0014305
    • Chopra P, Lee J, Kang J, Lee S, (2010) Improving Cancer Classification Accuracy Using Gene Pairs. PLoS ONE 5(12): e14305 doi:10.1371/journal.pone.0014305.
    • (2010) PLoS ONE , vol.5 , Issue.12
    • Chopra, P.1    Lee, J.2    Kang, J.3    Lee, S.4
  • 10
    • 79951526058 scopus 로고    scopus 로고
    • Optimization Based Tumor Classification from Microarray Gene Expression Data
    • doi: 10.1371/journal.pone.0014579
    • Dagliyan O, Uney-Yuksektepe F, Kavakli IH, Turkay M, (2011) Optimization Based Tumor Classification from Microarray Gene Expression Data. PLoS ONE 6(2): e14579 doi:10.1371/journal.pone.0014579.
    • (2011) PLoS ONE , vol.6 , Issue.2
    • Dagliyan, O.1    Uney-Yuksektepe, F.2    Kavakli, I.H.3    Turkay, M.4
  • 11
    • 0141855285 scopus 로고    scopus 로고
    • Decision tree classification of proteins identified by mass spectrometry of blood serum samples from people with and without lung cancer
    • Markey MK, Tourassi GD, Floyd CE Jr, (2003) Decision tree classification of proteins identified by mass spectrometry of blood serum samples from people with and without lung cancer. Proteomics 3: 1678-1679.
    • (2003) Proteomics , vol.3 , pp. 1678-1679
    • Markey, M.K.1    Tourassi, G.D.2    Floyd Jr., C.E.3
  • 12
    • 10744226708 scopus 로고    scopus 로고
    • A training-testing approach to the molecular classification of resected non-small cell lung cancer
    • Yamagata N, Shyr Y, Yanagisawa K, Edgerton M, Dang TP, et al. (2003) A training-testing approach to the molecular classification of resected non-small cell lung cancer. Clin Cancer Res 9: 4695-4704.
    • (2003) Clin Cancer Res , vol.9 , pp. 4695-4704
    • Yamagata, N.1    Shyr, Y.2    Yanagisawa, K.3    Edgerton, M.4    Dang, T.P.5
  • 13
    • 1142263111 scopus 로고    scopus 로고
    • Classification of individual lung cancer cell lines based on DNA methylation markers: use of linear discriminant analysis and artificial neural networks
    • Marchevsky AM, Tsou JA, Laird-Offringa IA, (2004) Classification of individual lung cancer cell lines based on DNA methylation markers: use of linear discriminant analysis and artificial neural networks. J Mol Diagn 6: 28-36.
    • (2004) J Mol Diagn , vol.6 , pp. 28-36
    • Marchevsky, A.M.1    Tsou, J.A.2    Laird-Offringa, I.A.3
  • 14
    • 68749107206 scopus 로고    scopus 로고
    • Lung cancer gene expression database analysis incorporating prior knowledge with support vector machine-based classification method
    • Guan P, Huang D, He M, Zhou B, (2009) Lung cancer gene expression database analysis incorporating prior knowledge with support vector machine-based classification method. J Exp Clin Cancer Res 28: 103.
    • (2009) J Exp Clin Cancer Res , vol.28 , pp. 103
    • Guan, P.1    Huang, D.2    He, M.3    Zhou, B.4
  • 15
    • 77958187989 scopus 로고    scopus 로고
    • Symbolic rule-based classification of lung cancer stages from free-text pathology reports
    • Nguyen AN, Lawley MJ, Hansen DP, Bowman RV, Clarke BE, et al. (2010) Symbolic rule-based classification of lung cancer stages from free-text pathology reports. J Am Med Inform Assoc 17: 440-445.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 440-445
    • Nguyen, A.N.1    Lawley, M.J.2    Hansen, D.P.3    Bowman, R.V.4    Clarke, B.E.5
  • 16
    • 84874675607 scopus 로고    scopus 로고
    • Gene Set Enrichment Analysis Data: Gene Sets, Accessed 2012 Dec 12
    • Gene Set Enrichment Analysis Data: Gene Sets. Available: http://www.broadinstitute.org/cancer/software/gsea. Accessed 2012 Dec 12.
  • 17
    • 84874686154 scopus 로고    scopus 로고
    • KEGG (Kyoto Encyclopedia of Genes and Genomes), Accessed 2012 Nov 30
    • KEGG (Kyoto Encyclopedia of Genes and Genomes). Available: http://www.kegg.jp/. Accessed 2012 Nov 30.
  • 18
    • 84874699544 scopus 로고    scopus 로고
    • Gene Card Database, Accessed: 2012 Nov 25
    • Gene Card Database. Available: www.genecards.org. Accessed: 2012 Nov 25.
  • 19
    • 84874740018 scopus 로고    scopus 로고
    • Universal Protein Resource, Accessed:2012 Nov 27
    • Universal Protein Resource. Available: www.uniprot.org. Accessed:2012 Nov 27.
  • 20
    • 79959928391 scopus 로고    scopus 로고
    • Update of PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence
    • Jul 1, 2011; 39(Web Server issue)
    • Rao HB, Zh Fu, Yang GB, Li ZR, Chen YZ (2011) Update of PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res. Jul 1, 2011; 39(Web Server issue): W385-90.
    • (2011) Nucleic Acids Res , pp. 385-390
    • Rao, H.B.1    Zh, F.2    Yang, G.B.3    Li, Z.R.4    Chen, Y.Z.5
  • 21
    • 33747816816 scopus 로고    scopus 로고
    • PROFEAT: A Web Server for Computing Structural and Physicochemical Features of Proteins and Peptides from Amino Acid Sequence
    • Jul 1, 2006; 34(Web Server issue)
    • ZR Li, HH Lin, LY Han, L Jiang, X Chen, YZ Chen (2006) PROFEAT: A Web Server for Computing Structural and Physicochemical Features of Proteins and Peptides from Amino Acid Sequence. Nucleic Acids Res. Jul 1, 2006; 34(Web Server issue): W32-7.
    • (2006) Nucleic Acids Res , pp. 32-37
    • Li, Z.R.1    Lin, H.H.2    Han, L.Y.3    Jiang, L.4    Chen, X.5    Chen, Y.Z.6
  • 22
    • 84874734139 scopus 로고    scopus 로고
    • Waikato Environment for Knowledge Analysis (WEKA) Machine Learning Tool, Available: http. Accessed 2012 Dec 1
    • Waikato Environment for Knowledge Analysis (WEKA) Machine Learning Tool, Available: http. Accessed 2012 Dec 1.
  • 23
    • 77955199287 scopus 로고    scopus 로고
    • Analysis and prediction of the metabolic stability of proteins based on their sequential features, sub cellular locations and interaction networks
    • Huang T, Shi XH, Wang P, He Z, Feng KY, et al. (2010) Analysis and prediction of the metabolic stability of proteins based on their sequential features, sub cellular locations and interaction networks. PLoS ONE 2010 5(6): e10972.
    • (2010) PLoS ONE 2010 , vol.5 , Issue.6
    • Huang, T.1    Shi, X.H.2    Wang, P.3    He, Z.4    Feng, K.Y.5
  • 24
    • 77955645823 scopus 로고    scopus 로고
    • Prediction of Deleterious Non-Synonymous SNPs Based on Protein Interaction Network and Hybrid Properties
    • Huang T, Wang P, Ye ZQ, Xu H, He Z, et al. (2010) Prediction of Deleterious Non-Synonymous SNPs Based on Protein Interaction Network and Hybrid Properties. PLoS ONE 5(7): e11900.
    • (2010) PLoS ONE , vol.5 , Issue.7
    • Huang, T.1    Wang, P.2    Ye, Z.Q.3    Xu, H.4    He, Z.5
  • 25
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: An overview
    • Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H, (2000) Assessing the accuracy of prediction algorithms for classification: An overview. Bioinformatics 16: 412-424.
    • (2000) Bioinformatics , vol.16 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3    Andersen, C.A.4    Nielsen, H.5
  • 26
    • 84867483025 scopus 로고    scopus 로고
    • Discovery of Knowledge Patterns in Clinical Data through Data Mining Algorithms: Multi-class Categorization of Breast Tissue Data
    • doi: 10.5120/3920-5521
    • Jacob SG, R Geetha Ramani, (2011) Discovery of Knowledge Patterns in Clinical Data through Data Mining Algorithms: Multi-class Categorization of Breast Tissue Data. International Journal of Computer Applications (IJCA) 32(7): 46-53 DOI:10.5120/3920-5521. Published by Foundation of Computer Science, New York, USA.
    • (2011) International Journal of Computer Applications (IJCA) , vol.32 , Issue.7 , pp. 46-53
    • Jacob, S.G.1    Ramani, R.G.2
  • 28
    • 79955705393 scopus 로고    scopus 로고
    • Combined Feature Selection and classification - A novel approach for the categorization of web pages
    • Selvakuberan K, Indradevi M, Rajaram R (2008) Combined Feature Selection and classification - A novel approach for the categorization of web pages. Journal of Information and Computing Science Vol. 3, No. 2, 2008, 083-089.
    • (2008) Journal of Information and Computing Science , vol.3 , Issue.2 , pp. 83-89
    • Selvakuberan, K.1    Indradevi, M.2    Rajaram, R.3
  • 29
    • 84863325623 scopus 로고    scopus 로고
    • Efficient Classifier for Classification of Hepatitis C Virus Clinical Data through Data Mining Algorithms and Techniques
    • Pondicherry, India, Techno Forum Group, India. ISBN: 978-81-920575-8-3: DOI: 10.73445/ISBN_0768, ACM#.dber.imera.10.73445
    • Jacob SG, Ramani RG, Nancy P (2012) Efficient Classifier for Classification of Hepatitis C Virus Clinical Data through Data Mining Algorithms and Techniques. Proceedings of the International Conference on Computer Applications, Pondicherry, India, Techno Forum Group, India. ISBN: 978-81-920575-8-3: DOI: 10.73445/ISBN_0768, ACM#.dber.imera.10.73445.
    • (2012) Proceedings of the International Conference on Computer Applications
    • Jacob, S.G.1    Ramani, R.G.2    Nancy, P.3
  • 30
    • 84866141625 scopus 로고    scopus 로고
    • Mining of Classification Patterns in Clinical Data through Data Mining Algorithms
    • Pages, ACM New York, NY, USA ©2012 ISBN: 978-1-4503-1196-0 doi>10.1145/2345396.2345557
    • Jacob SG, Ramani RG(2012) Mining of Classification Patterns in Clinical Data through Data Mining Algorithms. Proceedings of the International Conference on Advances in Computing, Communications and Informatics. Pages 997-1003 ACM New York, NY, USA ©2012 ISBN: 978-1-4503-1196-0 doi>10.1145/2345396.2345557.
    • (2012) Proceedings of the International Conference on Advances in Computing, Communications and Informatics , pp. 997-1003
    • Jacob, S.G.1    Ramani, R.G.2
  • 31
    • 84863328721 scopus 로고    scopus 로고
    • Evolving Efficient Classification Rules from Cardiotocography Data through Data Mining Methods and Techniques
    • Print ISSN: 1450-202X, E-ISSN 1450-216X
    • Jacob SG, Ramani RG (2012) Evolving Efficient Classification Rules from Cardiotocography Data through Data Mining Methods and Techniques. European Journal of Scientific Research, Print ISSN: 1450-202X, E-ISSN 1450-216X Vol.78 No.3 468-480.
    • (2012) European Journal of Scientific Research , vol.78 , Issue.3 , pp. 468-480
    • Jacob, S.G.1    Ramani, R.G.2
  • 33
    • 0004255908 scopus 로고    scopus 로고
    • Tata Mc-Graw Hill, pages. ISBN 0070428077
    • Mitchell T (1997) Machine Learning, Tata Mc-Graw Hill. 414 pages. ISBN 0070428077.
    • (1997) Machine Learning , pp. 414
    • Mitchell, T.1
  • 38
    • 79251548286 scopus 로고    scopus 로고
    • Analysis and prediction of translation rate based on sequence and functional features of the mRNA
    • Huang T, Wan S, Xu Z, Zheng Y, Feng KY, et al. (2011) Analysis and prediction of translation rate based on sequence and functional features of the mRNA. PLoS ONE 2011 6(1): e16036.
    • (2011) PLoS ONE 2011 , vol.6 , Issue.1
    • Huang, T.1    Wan, S.2    Xu, Z.3    Zheng, Y.4    Feng, K.Y.5
  • 39
    • 79961193016 scopus 로고    scopus 로고
    • Predicting the Transcriptional Activity of Multiple Site p53 mutants based on Hybrid Properties
    • doi: 10.1371/journal.pone.0022940
    • Huang T, Niu S, Xu Z, Huang Y, Kong X, et al. (2011) Predicting the Transcriptional Activity of Multiple Site p53 mutants based on Hybrid Properties. 6(8): e22940 doi:10.1371/journal.pone.0022940.
    • (2011) , vol.6 , Issue.8
    • Huang, T.1    Niu, S.2    Xu, Z.3    Huang, Y.4    Kong, X.5
  • 43
    • 0033707946 scopus 로고    scopus 로고
    • Friedman N, Linial M, Nachman I, Pe'er D (August 2000) Using Bayesian Networks to Analyze Expression Data
    • doi: 10.1089/106652700750050961, ISSN 1066-5277.PMID 11108481
    • Friedman N, Linial M, Nachman I, Pe'er D (August 2000) Using Bayesian Networks to Analyze Expression Data. Journal of Computational Biology (Larchmont, New York: Mary Ann Liebert, Inc.) 7 (3/4): 601-620 doi:10.1089/106652700750050961. ISSN 1066-5277.PMID 11108481.
    • Journal of Computational Biology (Larchmont, New York: Mary Ann Liebert, Inc.) , vol.7 , Issue.3-4 , pp. 601-620
  • 44
    • 79955076643 scopus 로고    scopus 로고
    • Supervised Machine Learning: A Review of Classification Techniques
    • Kotsiantis SB (2007) Supervised Machine Learning: A Review of Classification Techniques. Informatica 31249-268.
    • (2007) Informatica , pp. 31249-31268
    • Kotsiantis, S.B.1
  • 45
    • 10044298988 scopus 로고    scopus 로고
    • Comparing Clustering by the Variation of Information
    • Marina M (2003) Comparing Clustering by the Variation of Information. Learning Theory and Kernel Machines: 173-187.
    • (2003) Learning Theory and Kernel Machines , pp. 173-187
    • Marina, M.1
  • 53
    • 34548439881 scopus 로고    scopus 로고
    • Using Chou's amphiphilic pseudo amino acid composition and support vector machine for prediction of enzyme subfamily classes
    • Zhou XB, Chen C, Li ZC, Zou XY, (2007) Using Chou's amphiphilic pseudo amino acid composition and support vector machine for prediction of enzyme subfamily classes. Journal of Theoretical Biology 248: 546-551.
    • (2007) Journal of Theoretical Biology , vol.248 , pp. 546-551
    • Zhou, X.B.1    Chen, C.2    Li, Z.C.3    Zou, X.Y.4
  • 55
    • 78449309608 scopus 로고    scopus 로고
    • Are there any differences between features of proteins expressed in malignant and benign breast cancers?
    • Ebrahimi M, Ebrahimie E, Shamabadi N, (2010) Are there any differences between features of proteins expressed in malignant and benign breast cancers? J Res Med Sci 15: 299-309.
    • (2010) J Res Med Sci , vol.15 , pp. 299-309
    • Ebrahimi, M.1    Ebrahimie, E.2    Shamabadi, N.3
  • 57
    • 43749096790 scopus 로고    scopus 로고
    • Predicting cancer involvement of genes from heterogeneous data
    • Aragues R, Sander C, Oliva B, (2008) Predicting cancer involvement of genes from heterogeneous data. BMC Bioinformatics 9: 172.
    • (2008) BMC Bioinformatics , vol.9 , pp. 172
    • Aragues, R.1    Sander, C.2    Oliva, B.3
  • 58
    • 79959872486 scopus 로고    scopus 로고
    • Classification of lung cancer
    • Travis WD, (2011) Classification of lung cancer. Semin Roentgenol 46: 178-186.
    • (2011) Semin Roentgenol , vol.46 , pp. 178-186
    • Travis, W.D.1
  • 59
    • 80051757489 scopus 로고    scopus 로고
    • Pathway-based classification of lung cancer: a strategy to guide therapeutic selection
    • Nevins JR, (2011) Pathway-based classification of lung cancer: a strategy to guide therapeutic selection. Proc Am Thorac Soc 8: 180-182.
    • (2011) Proc Am Thorac Soc , vol.8 , pp. 180-182
    • Nevins, J.R.1
  • 60
    • 78751686551 scopus 로고    scopus 로고
    • Implications of new (seventh) TNM classification of lung cancer on general radiologists-a pictorial review
    • Raj V, Bajaj A, Entwisle JJ, (2011) Implications of new (seventh) TNM classification of lung cancer on general radiologists-a pictorial review. Curr Probl Diagn Radiol 40: 85-93.
    • (2011) Curr Probl Diagn Radiol , vol.40 , pp. 85-93
    • Raj, V.1    Bajaj, A.2    Entwisle, J.J.3
  • 61
    • 78649554119 scopus 로고    scopus 로고
    • The new TNM classification in lung cancer
    • Wrona A, Jassem J, (2010) The new TNM classification in lung cancer. Pneumonol Alergol Pol 78: 407-417.
    • (2010) Pneumonol Alergol Pol , vol.78 , pp. 407-417
    • Wrona, A.1    Jassem, J.2
  • 62
    • 77749252585 scopus 로고    scopus 로고
    • A radiologic review of the new TNM classification for lung cancer
    • Kligerman S, Abbott G, (2010) A radiologic review of the new TNM classification for lung cancer. AJR Am J Roentgenol 194: 562-573.
    • (2010) AJR Am J Roentgenol , vol.194 , pp. 562-573
    • Kligerman, S.1    Abbott, G.2
  • 63
    • 84863990888 scopus 로고    scopus 로고
    • Diagnosis and prediction of lung cancer through different classification techniques with tumor markers
    • Nie GJ, Feng FF, Wu YJ, Wu YM, (2009) Diagnosis and prediction of lung cancer through different classification techniques with tumor markers. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 27: 257-261.
    • (2009) Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi , vol.27 , pp. 257-261
    • Nie, G.J.1    Feng, F.F.2    Wu, Y.J.3    Wu, Y.M.4
  • 64
    • 77950507929 scopus 로고    scopus 로고
    • Application of protein markers in combination with ThinPrep bronchial brush cytology in classification of lung cancer subtypes
    • Yang Y, Pan QJ, Teng MF, Li ZL, Zhao LL, et al. (2008) Application of protein markers in combination with ThinPrep bronchial brush cytology in classification of lung cancer subtypes. Zhonghua Zhong Liu Za Zhi 30: 616-619.
    • (2008) Zhonghua Zhong Liu Za Zhi , vol.30 , pp. 616-619
    • Yang, Y.1    Pan, Q.J.2    Teng, M.F.3    Li, Z.L.4    Zhao, L.L.5
  • 66
    • 84873906085 scopus 로고    scopus 로고
    • Accessed 2012 Dec 10
    • Leo Breiman, Adele Cuttler, Random Trees. Available: http://www.stat.berkeley.edu/users/breiman/RandomForests/. Accessed 2012 Dec 10.
    • Leo Breiman, Adele Cuttler, Random Trees
  • 67
    • 84873188444 scopus 로고    scopus 로고
    • Design and Implementation of a Clinical Data Classifier: A Supervised Learning Approach
    • Jacob SG, Ramani RG, (2013) Design and Implementation of a Clinical Data Classifier: A Supervised Learning Approach. Res J Biotech. Vol. 8(2): 16-26.
    • (2013) Res J Biotech , vol.8 , Issue.2 , pp. 16-26
    • Jacob, S.G.1    Ramani, R.G.2
  • 68
    • 84873931832 scopus 로고    scopus 로고
    • Geetha Ramani R, Jacob SG (2013) Prediction of P53 Mutants (Multiple Sites) Transcriptional Activity Based on Structural (2D & 3D) Properties. PLoS ONE 8(2)e55401. doi:10.1371/journal.pone.0055401.
    • , vol.8 , Issue.2
  • 69
    • 84874710178 scopus 로고    scopus 로고
    • NodeXl Visualization Tool, Accessed: 2012 Dec 12
    • NodeXl Visualization Tool. Available: http://nodexl.codeplex.com/releases/view/96383. Accessed: 2012 Dec 12.
  • 70
    • 4744349442 scopus 로고    scopus 로고
    • Bayesian Analysis, Pattern Analysis and Data Mining in Health Care
    • Peter L, (2004) Bayesian Analysis, Pattern Analysis and Data Mining in Health Care. Current Opinion in Critical Care 10: 399.
    • (2004) Current Opinion in Critical Care , vol.10 , pp. 399
    • Peter, L.1
  • 71
    • 84874744973 scopus 로고    scopus 로고
    • Medical Inference by Network Integration of Temporal Data Using Bayesian Analysis, Accessed 2012 Dec 10
    • Medical Inference by Network Integration of Temporal Data Using Bayesian Analysis. Available:http://www.minituba.org/docs/tutorial.php. Accessed 2012 Dec 10.
  • 72
    • 73949105286 scopus 로고    scopus 로고
    • Evaluation of a Dynamic Bayesian Belief Network to Predict Osteoarthritic Knee Pain Using Data from the Osteoarthritis Initiative
    • Watt EW, Bui AAT, (2008) Evaluation of a Dynamic Bayesian Belief Network to Predict Osteoarthritic Knee Pain Using Data from the Osteoarthritis Initiative, AMIA Annu Symp Proc. 2008 2008: 788-792.
    • (2008) AMIA Annu Symp Proc. 2008 , pp. 788-792
    • Watt, E.W.1    Bui, A.A.T.2
  • 73
    • 78651563110 scopus 로고    scopus 로고
    • Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period World Academy of Science
    • Li J, Serpen G, Selman S, Franchetti M, Riesen M, Schneider C (2010) Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period World Academy of Science, Engineering and Technology 39 144-150.
    • (2010) Engineering and Technology , vol.39 , pp. 144-150
    • Li, J.1    Serpen, G.2    Selman, S.3    Franchetti, M.4    Riesen, M.5    Schneider, C.6
  • 75
    • 77958165608 scopus 로고    scopus 로고
    • Jiang X, Cooper GF (July-August 2010) A Bayesian spatio-temporal method for disease outbreak detection
    • Jiang X, Cooper GF (July-August 2010) A Bayesian spatio-temporal method for disease outbreak detection. J Am Med Inform Assoc 17 (4): 462-71.
    • J Am Med Inform Assoc , vol.17 , Issue.4 , pp. 462-471


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.