메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3353-3357

Classification of biological cells using bio-inspired descriptors

Author keywords

[No Author keywords available]

Indexed keywords

AUTOIMMUNE DISEASE; AUTOMATED APPROACH; BIO-INSPIRED; BIOLOGICAL CELLS; CELL IMAGES; CELLULAR IMAGE; CLASSIFICATION METHODS; CLASSIFICATION PRECISION; DESCRIPTORS; FEATURE SPACE; FLUORESCENCE MICROSCOPY IMAGES; HEP-2 CELLS; SUPERVISED CLASSIFICATION;

EID: 84874562383     PISSN: 10514651     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (11)
  • 2
    • 0000929221 scopus 로고
    • What is the goal of sensory coding?
    • D. J. Field. What is the goal of sensory coding? Neural Computation, 6(4):559-601, 1994.
    • (1994) Neural Computation , vol.6 , Issue.4 , pp. 559-601
    • Field, D.J.1
  • 3
    • 80053038540 scopus 로고    scopus 로고
    • Early experiences in mitotic cells recognition on hep-2 slides
    • P. Foggia, G. Percannella, P. Soda, and M. Vento. Early experiences in mitotic cells recognition on hep-2 slides. In CBMS'10, pages 38-43, 2010.
    • (2010) CBMS'10 , pp. 38-43
    • Foggia, P.1    Percannella, G.2    Soda, P.3    Vento, M.4
  • 4
    • 78649317568 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • jan
    • H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE Trans. PAMI, 33(1):117-128, jan 2011. to appear.
    • (2011) IEEE Trans. PAMI , vol.33 , Issue.1 , pp. 117-128
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 5
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scaleinvariant keypoints
    • D. G. Lowe. Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 6
    • 70349847835 scopus 로고    scopus 로고
    • Bregman divergences and surrogates for learning
    • R. Nock and F. Nielsen. Bregman divergences and surrogates for learning. IEEE Trans. PAMI, 31(11):2048-2059, 2009.
    • (2009) IEEE Trans. PAMI , vol.31 , Issue.11 , pp. 2048-2059
    • Nock, R.1    Nielsen, F.2
  • 7
    • 84855222926 scopus 로고    scopus 로고
    • Leveraging k-nn for generic classification boosting
    • March
    • P. Piro, R. Nock, F. Nielsen, and M. Barlaud. Leveraging k-nn for generic classification boosting. Neurocomputing, 80:3-9, March 2012.
    • (2012) Neurocomputing , vol.80 , pp. 3-9
    • Piro, P.1    Nock, R.2    Nielsen, F.3    Barlaud, M.4
  • 8
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37:297-336, 1999.
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 10
    • 0035380719 scopus 로고    scopus 로고
    • Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex
    • June
    • R. Van Rullen and S. J. Thorpe. Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput, 13(6):1255-1283, June 2001.
    • (2001) Neural Comput , vol.13 , Issue.6 , pp. 1255-1283
    • Van Rullen, R.1    Thorpe, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.