-
6
-
-
0028194468
-
-
D. A. Hajduk S. M. Gruner P. Rangarajan R. A. Register L. J. Fetters C. Honeker R. J. Albalak E. L. Thomas Macromolecules 1994 27 490 501
-
(1994)
Macromolecules
, vol.27
, pp. 490-501
-
-
Hajduk, D.A.1
Gruner, S.M.2
Rangarajan, P.3
Register, R.A.4
Fetters, L.J.5
Honeker, C.6
Albalak, R.J.7
Thomas, E.L.8
-
17
-
-
0032136843
-
-
N. P. Balsara B. A. Garetz M. Y. Chang H. J. Dai M. C. Newstein J. L. Goveas R. Krishnamoorti S. Rai Macromolecules 1998 31 5309 5315
-
(1998)
Macromolecules
, vol.31
, pp. 5309-5315
-
-
Balsara, N.P.1
Garetz, B.A.2
Chang, M.Y.3
Dai, H.J.4
Newstein, M.C.5
Goveas, J.L.6
Krishnamoorti, R.7
Rai, S.8
-
21
-
-
0001218547
-
-
P. C. Hohenberg J. B. Swift Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1995 52 1828 1845
-
(1995)
Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
, vol.52
, pp. 1828-1845
-
-
Hohenberg, P.C.1
Swift, J.B.2
-
26
-
-
3843102131
-
-
S. Qi Z.-G. Wang Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1997 55 1682 1697
-
(1997)
Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
, vol.55
, pp. 1682-1697
-
-
Qi, S.1
Wang, Z.-G.2
-
31
-
-
85035229830
-
-
A. V. Zvelindovsky G. J. A. Sevink B. A. C. van Vlimmeren N. M. Maurits J. G. E. M. Fraaije Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1998 57 R4879 R4882
-
(1998)
Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
, vol.57
-
-
Zvelindovsky, A.V.1
Sevink, G.J.A.2
Van Vlimmeren, B.A.C.3
Maurits, N.M.4
Fraaije, J.G.E.M.5
-
33
-
-
0034270121
-
-
A. V. Zvelindovsky G. J. A. Sevink J. G. E. M. Fraaije Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2000 62 R3063 R3066
-
(2000)
Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
, vol.62
-
-
Zvelindovsky, A.V.1
Sevink, G.J.A.2
Fraaije, J.G.E.M.3
-
42
-
-
22444445268
-
-
A and are, therefore, not independent. In this work, ξ will depend slightly on γ, following the prescription in ref. 16 Here, we employ the simplest dynamical model, in which Γ is a constant. In general, however, Γ can depend on the local composition or, due to the polymeric nature of the problem, can be a non-local function of position (see, for example
-
G. H. Fredrickson E. Helfand J. Chem. Phys. 1987 87 697 705
-
(1987)
J. Chem. Phys.
, vol.87
, pp. 697-705
-
-
Fredrickson, G.H.1
Helfand, E.2
-
44
-
-
0000262456
-
-
Furthermore, we have ignored hydrodynamic interactions (see, for example
-
N. M. Maurits J. G. E. M. Fraaije J. Chem. Phys. 1997 107 5879 5889
-
(1997)
J. Chem. Phys.
, vol.107
, pp. 5879-5889
-
-
Maurits, N.M.1
Fraaije, J.G.E.M.2
-
45
-
-
0001022293
-
-
It would be interesting to extend the present simulation and investigate how these modifications influence, for example, the droplet interfacial velocity
-
R. D. Groot T. J. Madden D. J. Tildesley J. Chem. Phys. 1999 110 9739 9749
-
(1999)
J. Chem. Phys.
, vol.110
, pp. 9739-9749
-
-
Groot, R.D.1
Madden, T.J.2
Tildesley, D.J.3
-
47
-
-
0000772697
-
-
This scaling of the free energy of the droplet was discussed in ref. 16. To scale the free energy from our simulation in this way requires knowledge of two parameters in the Leibler model. 16,33 Our model differs from that in ref. 19, since our model includes a quartic gradient in the free energy, eqn (1), and also produces an anisotropic interfacial free-energy. Nevertheless, we can show analytically that neither the quartic gradient nor the anisotropy modify the mechanism for selecting the interface velocity in ref. 19, although the anisotropy enters into the expression for the velocity (unpublished). The conclusion that the late-time interface velocity is constant in time, and that this velocity vanishes linearly with undercooling near coexistence, still holds for our model
-
V. E. Podneks I. W. Hamley JETP Lett. 1996 64 617 624
-
(1996)
JETP Lett.
, vol.64
, pp. 617-624
-
-
Podneks, V.E.1
Hamley, I.W.2
|