메뉴 건너뛰기




Volumn 9, Issue 12, 2013, Pages 3373-3382

Simulation of nucleation dynamics at the cylinder-to-lamellar transition in a diblock copolymer melt

Author keywords

[No Author keywords available]

Indexed keywords

CRITICAL NUCLEUS SIZE; CRITICAL SIZE; CYLINDER AXIS; DIBLOCK COPOLYMER MELTS; DROPLET SHAPE; DYNAMICAL EVOLUTION; EXPERIMENTAL OBSERVATION; INTERFACE ORIENTATION; INTERFACIAL VELOCITIES; LAMELLAR PHASE; LARGE SCALE SIMULATIONS; LATE STAGE; MINOR AXIS; NUCLEATION PROCESS; THEORETICAL PREDICTION; TIME INDEPENDENTS; TIME-DEPENDENT;

EID: 84874417188     PISSN: 1744683X     EISSN: 17446848     Source Type: Journal    
DOI: 10.1039/c3sm27499c     Document Type: Article
Times cited : (23)

References (47)
  • 42
    • 22444445268 scopus 로고
    • A and are, therefore, not independent. In this work, ξ will depend slightly on γ, following the prescription in ref. 16 Here, we employ the simplest dynamical model, in which Γ is a constant. In general, however, Γ can depend on the local composition or, due to the polymeric nature of the problem, can be a non-local function of position (see, for example
    • G. H. Fredrickson E. Helfand J. Chem. Phys. 1987 87 697 705
    • (1987) J. Chem. Phys. , vol.87 , pp. 697-705
    • Fredrickson, G.H.1    Helfand, E.2
  • 44
    • 0000262456 scopus 로고    scopus 로고
    • Furthermore, we have ignored hydrodynamic interactions (see, for example
    • N. M. Maurits J. G. E. M. Fraaije J. Chem. Phys. 1997 107 5879 5889
    • (1997) J. Chem. Phys. , vol.107 , pp. 5879-5889
    • Maurits, N.M.1    Fraaije, J.G.E.M.2
  • 45
    • 0001022293 scopus 로고    scopus 로고
    • It would be interesting to extend the present simulation and investigate how these modifications influence, for example, the droplet interfacial velocity
    • R. D. Groot T. J. Madden D. J. Tildesley J. Chem. Phys. 1999 110 9739 9749
    • (1999) J. Chem. Phys. , vol.110 , pp. 9739-9749
    • Groot, R.D.1    Madden, T.J.2    Tildesley, D.J.3
  • 47
    • 0000772697 scopus 로고    scopus 로고
    • This scaling of the free energy of the droplet was discussed in ref. 16. To scale the free energy from our simulation in this way requires knowledge of two parameters in the Leibler model. 16,33 Our model differs from that in ref. 19, since our model includes a quartic gradient in the free energy, eqn (1), and also produces an anisotropic interfacial free-energy. Nevertheless, we can show analytically that neither the quartic gradient nor the anisotropy modify the mechanism for selecting the interface velocity in ref. 19, although the anisotropy enters into the expression for the velocity (unpublished). The conclusion that the late-time interface velocity is constant in time, and that this velocity vanishes linearly with undercooling near coexistence, still holds for our model
    • V. E. Podneks I. W. Hamley JETP Lett. 1996 64 617 624
    • (1996) JETP Lett. , vol.64 , pp. 617-624
    • Podneks, V.E.1    Hamley, I.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.