-
1
-
-
0003090115
-
Superfast solution of real positive definite Toeplitz systems
-
Ammar G.S., Gragg W.B. Superfast solution of real positive definite Toeplitz systems. SIAM J. Matrix Anal. Appl. 1988, 9:61-76.
-
(1988)
SIAM J. Matrix Anal. Appl.
, vol.9
, pp. 61-76
-
-
Ammar, G.S.1
Gragg, W.B.2
-
2
-
-
77955182207
-
Applications of variational iteration and homotopy perturbation methods to obtain exact solutions for time-fractional diffusion-wave equations
-
Ates I., Yildirim A. Applications of variational iteration and homotopy perturbation methods to obtain exact solutions for time-fractional diffusion-wave equations. Int. J. Numer. Methods Heat Fluid Flow 2010, 20:638-654.
-
(2010)
Int. J. Numer. Methods Heat Fluid Flow
, vol.20
, pp. 638-654
-
-
Ates, I.1
Yildirim, A.2
-
3
-
-
0003473816
-
-
SIAM, Philadelphia, PA
-
Barrett R., Berry M., Chan T.F., Demmel J., Donato J.M., Dongarra J., Eijkhout V., Pozo R., Romine C., der Vorst H.V. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods 1994, SIAM, Philadelphia, PA.
-
(1994)
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods
-
-
Barrett, R.1
Berry, M.2
Chan, T.F.3
Demmel, J.4
Donato, J.M.5
Dongarra, J.6
Eijkhout, V.7
Pozo, R.8
Romine, C.9
der Vorst, H.V.10
-
5
-
-
69049086472
-
Compact finite difference method for the fractional diffusion equation
-
Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228:7792-7804.
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 7792-7804
-
-
Cui, M.1
-
8
-
-
42649109055
-
Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation
-
Ervin V.J., Heuer N., Roop J.P. numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 2007, 45:572-591.
-
(2007)
SIAM J. Numer. Anal.
, vol.45
, pp. 572-591
-
-
Ervin, V.J.1
Heuer, N.2
Roop, J.P.3
-
9
-
-
33646262074
-
Variational formulation for the stationary fractional advection dispersion equation
-
Ervin V.J., Roop J.P. Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 2005, 22:558-576.
-
(2005)
Numer. Methods Partial Differ. Equ.
, vol.22
, pp. 558-576
-
-
Ervin, V.J.1
Roop, J.P.2
-
10
-
-
33847793586
-
Variational solution of fractional advection dispersion equations on bounded domains in Rd
-
Ervin V.J., Roop J.P. Variational solution of fractional advection dispersion equations on bounded domains in Rd. Numer. Methods. Partial Differ. Equ. 2007, 23:256-281.
-
(2007)
Numer. Methods. Partial Differ. Equ.
, vol.23
, pp. 256-281
-
-
Ervin, V.J.1
Roop, J.P.2
-
11
-
-
0345725412
-
Approximation of Lévy-Feller diffusion by random walk
-
Gorenflo R., Mainardi F. Approximation of Lévy-Feller diffusion by random walk. J. Anal. Appl. (ZAA) 1999, 18:231-246.
-
(1999)
J. Anal. Appl. (ZAA)
, vol.18
, pp. 231-246
-
-
Gorenflo, R.1
Mainardi, F.2
-
12
-
-
33645776880
-
Toeplitz and circulant matrices: a review
-
Gray R.M. Toeplitz and circulant matrices: a review. Found. Trends Commun. 2006, 2:155-239.
-
(2006)
Found. Trends Commun.
, vol.2
, pp. 155-239
-
-
Gray, R.M.1
-
13
-
-
84863756728
-
High-order accurate Runge-Kutta (local) discontinuous Galerkin methods for one- and two-dimensional fractional diffusion equations
-
Ji X., Tang H. High-order accurate Runge-Kutta (local) discontinuous Galerkin methods for one- and two-dimensional fractional diffusion equations. Numer. Math. Theor. Methods Appl. 2012, 5:333-358.
-
(2012)
Numer. Math. Theor. Methods Appl.
, vol.5
, pp. 333-358
-
-
Ji, X.1
Tang, H.2
-
14
-
-
77954143774
-
Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
-
Li X., Xu C. Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 2010, 8:1016-1051.
-
(2010)
Commun. Comput. Phys.
, vol.8
, pp. 1016-1051
-
-
Li, X.1
Xu, C.2
-
15
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck equation
-
Liu F., Anh V., Turner I. Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 2004, 166:209-219.
-
(2004)
J. Comput. Appl. Math.
, vol.166
, pp. 209-219
-
-
Liu, F.1
Anh, V.2
Turner, I.3
-
16
-
-
33751548431
-
Numerical simulation for solute transport in fractal porous media
-
Liu F., Anh V., Turner I., Zhuang P. Numerical simulation for solute transport in fractal porous media. ANZIAM J. 2004, 45(E):C461-C473.
-
(2004)
ANZIAM J.
, vol.45
, Issue.E
-
-
Liu, F.1
Anh, V.2
Turner, I.3
Zhuang, P.4
-
18
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equations
-
Meerschaert M.M., Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 2004, 172:65-77.
-
(2004)
J. Comput. Appl. Math.
, vol.172
, pp. 65-77
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
19
-
-
28044468843
-
Finite difference approximations for two-sided space-fractional partial differential equations
-
Meerschaert M.M., Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 2006, 56:80-90.
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 80-90
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
20
-
-
0002641421
-
The random walk's guide to anomalous diffusion: a fractional dynamics approach
-
Metler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000, 339:1-77.
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metler, R.1
Klafter, J.2
-
21
-
-
4043151477
-
The restaurant at the end of random walk: recent developments in the description of anomalous transport by fractional dynamics
-
Metler R., Klafter J. The restaurant at the end of random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 2004, 37:R161-R208.
-
(2004)
J. Phys. A
, vol.37
-
-
Metler, R.1
Klafter, J.2
-
25
-
-
77955927812
-
2N) finite difference method for fractional diffusion equations
-
2N) finite difference method for fractional diffusion equations. J. Comput. Phys. 2010, 229:8095-8104.
-
(2010)
J. Comput. Phys.
, vol.229
, pp. 8095-8104
-
-
Wang, H.1
Wang, K.2
Sircar, T.3
-
27
-
-
71549148064
-
Homotopy perturbation method for solving the space-time fractional advection-dispersion equation
-
Yildirim A., Koçak H. Homotopy perturbation method for solving the space-time fractional advection-dispersion equation. Adv. Water Resour. 2009, 12:1711-1716.
-
(2009)
Adv. Water Resour.
, vol.12
, pp. 1711-1716
-
-
Yildirim, A.1
Koçak, H.2
-
28
-
-
77955367863
-
Analytical solution of linear and non-linear space-time fractional reaction-diffusion equations
-
Yildirim A., Sezer S.A. Analytical solution of linear and non-linear space-time fractional reaction-diffusion equations. Int. J. Chem. Reactor Eng. 2010, 8:1-21.
-
(2010)
Int. J. Chem. Reactor Eng.
, vol.8
, pp. 1-21
-
-
Yildirim, A.1
Sezer, S.A.2
-
29
-
-
84867690690
-
Finite difference/element method for a two-dimensional modified fractional diffusion equation
-
Zhang N., Deng W., Wu Y. Finite difference/element method for a two-dimensional modified fractional diffusion equation. Adv. Appl. Math. Mech. 2012, 4:496-518.
-
(2012)
Adv. Appl. Math. Mech.
, vol.4
, pp. 496-518
-
-
Zhang, N.1
Deng, W.2
Wu, Y.3
-
30
-
-
23944449029
-
A mass balance based numerical method for the fractional advection-dispersion equation: theory and application
-
Zhang X., Crawford J.W., Deeks L.K., Stutter M.I., Bengough A.G., Young I.M. A mass balance based numerical method for the fractional advection-dispersion equation: theory and application. Water Resour. Res. 2005, 41:W07029.
-
(2005)
Water Resour. Res.
, vol.41
-
-
Zhang, X.1
Crawford, J.W.2
Deeks, L.K.3
Stutter, M.I.4
Bengough, A.G.5
Young, I.M.6
-
31
-
-
34347238581
-
Space-fractional advection-dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the MADE-site data
-
Zhang Y., Benson D.A., Meerschaert M.M., LaBolle E.M. Space-fractional advection-dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the MADE-site data. Water Resour. Res. 2007, 43:W05439.
-
(2007)
Water Resour. Res.
, vol.43
-
-
Zhang, Y.1
Benson, D.A.2
Meerschaert, M.M.3
LaBolle, E.M.4
|