메뉴 건너뛰기




Volumn 45, Issue 1, 2013, Pages 38-53

A SAS/IML program using the Kalman filter for estimating state space models

Author keywords

Kalman filter; SAS IML; State space model

Indexed keywords

ALGORITHM; ARTICLE; COMPUTER INTERFACE; COMPUTER PROGRAM; HUMAN; NORMAL DISTRIBUTION; PSYCHOLOGICAL MODEL; STATISTICAL MODEL;

EID: 84874361385     PISSN: 1554351X     EISSN: 15543528     Source Type: Journal    
DOI: 10.3758/s13428-012-0227-8     Document Type: Article
Times cited : (3)

References (27)
  • 2
    • 77951663345 scopus 로고    scopus 로고
    • Equivalence and differences between structural equation modeling and state-space modeling techniques
    • Chow, S.-M., Ho, M.-H. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling, 17, 303-332.
    • (2010) Structural Equation Modeling , vol.17 , pp. 303-332
    • Chow, S.-M.1    Ho, M.-H.R.2    Hamaker, E.L.3    Dolan, C.V.4
  • 4
    • 79961225739 scopus 로고    scopus 로고
    • Statistical software for state space methods
    • Retrieved from
    • Commandeur, J. J. F., Koopman, S. J., & Ooms, M. (2011). Statistical software for state space methods. Journal of Statistical Software, 41, 1-18. Retrieved from www. jstatsoft. org/v41/i1/.
    • (2011) Journal of Statistical Software , vol.41 , pp. 1-18
    • Commandeur, J.J.F.1    Koopman, S.J.2    Ooms, M.3
  • 8
    • 27844472136 scopus 로고    scopus 로고
    • Statistical modeling of the individual: Rational and application of multivariate stationary time series analysis
    • Hamaker, E. L., Dolan, C. V., & Molenaar, P. C. M. (2005). Statistical modeling of the individual: Rational and application of multivariate stationary time series analysis. Multivariate Behavioral Research, 40, 207-233.
    • (2005) Multivariate Behavioral Research , vol.40 , pp. 207-233
    • Hamaker, E.L.1    Dolan, C.V.2    Molenaar, P.C.M.3
  • 11
    • 33646131681 scopus 로고    scopus 로고
    • State-space approach to modeling dynamic processes: Applications in biological and social sciences
    • T. A. Walls and J. L. Schafer (Eds.), New York, NY: Oxford University Press
    • Ho, M.-H. R., Shumway, R., & Ombao, H. (2006). State-space approach to modeling dynamic processes: Applications in biological and social sciences. In T. A. Walls & J. L. Schafer (Eds.), Models for intensive longitudinal data (pp. 148-170). New York, NY: Oxford University Press.
    • (2006) Models for Intensive Longitudinal Data , pp. 148-170
    • Ho, M.-H.R.1    Shumway, R.2    Ombao, H.3
  • 14
    • 32544452484 scopus 로고    scopus 로고
    • A manifesto on psychology as idiographic science: Bring the person back into scientific psychology, this time forever
    • Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bring the person back into scientific psychology, this time forever. Measurement, 2, 201-218.
    • (2004) Measurement , vol.2 , pp. 201-218
    • Molenaar, P.C.M.1
  • 16
    • 84865493367 scopus 로고    scopus 로고
    • Advances in dynamic factor analysis of psychological processes
    • J. Valsiner, P. C. M. Molenaar, MCDPLyra, and N. Chaudhary (Eds.), Dordrecht, The Netherlands: Springer Science
    • Molenaar, P. C. M., & Ram, N. (2009). Advances in dynamic factor analysis of psychological processes. In J. Valsiner, P. C. M. Molenaar, M. C. D. P. Lyra, & N. Chaudhary (Eds.), Dynamic process methodology in the social and developmental sciences (pp. 255-268). Dordrecht, The Netherlands: Springer Science.
    • (2009) Dynamic Process Methodology in the Social and Developmental Sciences , pp. 255-268
    • Molenaar, P.C.M.1    Ram, N.2
  • 17
    • 84874380621 scopus 로고    scopus 로고
    • SAS Institute Inc, Cary, NC: SAS Institute Inc
    • SAS Institute Inc. (2010). SAS/IML®9. 22 user's guide. Cary, NC: SAS Institute Inc.
    • (2010) SAS/IML®Spicsupspi 9.22 User's Guide
  • 18
    • 84939734910 scopus 로고
    • Evaluation of likelihood functions for Gaussian signals
    • Schweppe, F. (1965). Evaluation of likelihood functions for Gaussian signals. IEEE Transactions on Information Theory, 11, 61-70.
    • (1965) IEEE Transactions on Information Theory , vol.11 , pp. 61-70
    • Schweppe, F.1
  • 19
    • 79961218198 scopus 로고    scopus 로고
    • State space modeling using SAS
    • Retrieved from
    • Selukar, R. (2011). State space modeling using SAS. Journal of Statistical Software, 41, 1-13. Retrieved from www. jstatsoft. org/v41/i12/.
    • (2011) Journal of Statistical Software , vol.41 , pp. 1-13
    • Selukar, R.1
  • 20
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the EM algorithm
    • Shumway, R. H., & Stoffer, D. S. (1982). An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3, 253-264.
    • (1982) Journal of Time Series Analysis , vol.3 , pp. 253-264
    • Shumway, R.H.1    Stoffer, D.S.2
  • 21
    • 70449562577 scopus 로고    scopus 로고
    • State-space modeling of dynamic psychological processes via the Kalman smoother algorithm: Rationale, finite sample properties, and applications
    • Song, H., & Ferrer, E. (2009). State-space modeling of dynamic psychological processes via the Kalman smoother algorithm: Rationale, finite sample properties, and applications. Structural Equation Modeling, 16, 338-363.
    • (2009) Structural Equation Modeling , vol.16 , pp. 338-363
    • Song, H.1    Ferrer, E.2
  • 22
    • 0011520418 scopus 로고
    • Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman filter
    • Stoffer, D. S., & Wall, K. D. (1991). Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman filter. Journal of the American Statistical Association, 86, 1024-1033.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 1024-1033
    • Stoffer, D.S.1    Wall, K.D.2
  • 23
    • 27644509950 scopus 로고    scopus 로고
    • Resampling in state spaace models
    • In A. Harvey, S. J. Koopman, & N. Shephar (Eds.), New York, NY: Cambridge University Press
    • Stoffer, D. S., & Wall, K. D. (2004). Resampling in state spaace models. In A. Harvey, S. J. Koopman, & N. Shephar (Eds.), State space and unobserved component models: Theory and applications. (pp. 171-202). New York, NY: Cambridge University Press.
    • (2004) State space and unobserved component models: Theory and applications , pp. 171-202
    • Stoffer, D.S.1    Wall, K.D.2
  • 26
    • 79952251387 scopus 로고    scopus 로고
    • Standard error estimation in stationary multivariate time series models using residual-based bootstrap procedures
    • P. C. M. Molenaar and K. M. Newell (Eds.), Washington, DC: American Psychological Association
    • Zhang, G., & Chow, S.-M. (2010). Standard error estimation in stationary multivariate time series models using residual-based bootstrap procedures. In P. C. M. Molenaar & K. M. Newell (Eds.), Individual pathway of change: Statistical models for analyzing learning and development (pp. 169-182). Washington, DC: American Psychological Association.
    • (2010) Individual Pathway of Change: Statistical Models for Analyzing Learning and Development , pp. 169-182
    • Zhang, G.1    Chow, S.-M.2
  • 27
    • 47949098250 scopus 로고    scopus 로고
    • Comparisons of four methods for estimating a dynamic factor model
    • Zhang, Z., Hamaker, E. L., & Nesselroade, J. R. (2008). Comparisons of four methods for estimating a dynamic factor model. Structural Equation Modeling, 15, 377-402.
    • (2008) Structural Equation Modeling , vol.15 , pp. 377-402
    • Zhang, Z.1    Hamaker, E.L.2    Nesselroade, J.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.