메뉴 건너뛰기




Volumn 13, Issue 2, 2013, Pages 207-219

Detection of epileptic seizure in EEG recordings by spectral method and statistical analysis

Author keywords

Electroencephalograph; Epileptic seizure; Fast Fourier transform; Power spectrum; Statistical analysis; Time series signal

Indexed keywords

BRAIN ELECTRICAL ACTIVITY; EEG RECORDING; EEG SIGNALS; ELECTROENCEPHALOGRAPH; EPILEPTIC SEIZURE DETECTION; EPILEPTIC SEIZURES; INDISPENSABLE TOOLS; LARGE DATASETS; NONSTATIONARY PROCESS; OFFLINE; REAL TIME; ROOT MEAN SQUARE; SPECTRAL METHODS; SPECTRAL POWER; STANDARD DEVIATION; TIME SERIES SIGNALS;

EID: 84874309049     PISSN: 18125654     EISSN: 18125662     Source Type: Journal    
DOI: 10.3923/jas.2013.207.219     Document Type: Article
Times cited : (16)

References (32)
  • 1
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • Andrzejak, R.G., K. Lehnertz, F. Mormann, C. Rieke, P. David and C.E. Elger, 2001. Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E, Vol. 64.
    • (2001) Phys. Rev. E , vol.64
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 2
    • 79954484297 scopus 로고    scopus 로고
    • EEG signal classification for seizure analysis using statistical measures
    • Bedeeuzzaman, M., O. Farooq and Y.U. Khan, 2009. EEG signal classification for seizure analysis using statistical measures. Proc. EIP, 1: 366-372.
    • (2009) Proc. EIP , vol.1 , pp. 366-372
    • Bedeeuzzaman, M.1    Farooq, O.2    Khan, Y.U.3
  • 3
    • 0001384773 scopus 로고    scopus 로고
    • Time-frequency analysis of electroencephalogram series. III. Wavelet packets
    • Blanco, S., A. Figliola, R.Q. Quiroga, O.A. Rosso and E. Serrano, 1998. Time-frequency analysis of electroencephalogram series. III. Wavelet packets. Phys. Rev., 57: 932-940.
    • (1998) Phys. Rev , vol.57 , pp. 932-940
    • Blanco, S.1    Figliola, A.2    Quiroga, R.Q.3    Rosso, O.A.4    Serrano, E.5
  • 6
    • 33744977757 scopus 로고    scopus 로고
    • Spectrum Estimation and Modeling
    • Madisetti, V.K. andD.B. Williams, (Eds.). CRC Press, Boca Raton, USA
    • Djuric, P.M. and S.M. Kay, 1999. Spectrum Estimation and Modeling. In: Digital Signal Processing Handbook, Madisetti, V.K. andD.B. Williams, (Eds.). CRC Press, Boca Raton, USA., pp: 346-347.
    • (1999) Digital Signal Processing Handbook , pp. 346-347
    • Djuric, P.M.1    Kay, S.M.2
  • 7
    • 84874302580 scopus 로고
    • 2ndEdn, Williams and Wilkins, Baltimore, MD., USA, ISBN-13: 9780683032499
    • Fix, J.D., 1995. Neuroanotomy. 2ndEdn, Williams and Wilkins, Baltimore, MD., USA., ISBN-13: 9780683032499, pp: 393-398.
    • (1995) Neuroanotomy , pp. 393-398
    • Fix, J.D.1
  • 8
    • 0029122727 scopus 로고
    • Mapping cognitive brain function with modern high resolution electroencephalograph
    • Gevms, A., H. Leong, M.E. Smith, J. Le and R. Du, 1995. Mapping cognitive brain function with modern high resolution electroencephalograph. Trends Neurosci., 18: 429-436.
    • (1995) Trends Neurosci , vol.18 , pp. 429-436
    • Gevms, A.1    Leong, H.2    Smith, M.E.3    Le, J.4    Du, R.5
  • 10
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • Guler, ML., E.D. Ubeyh and I. Guler, 2005. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl., 29: 506-514.
    • (2005) Expert Syst. Appl , vol.29 , pp. 506-514
    • Guler, M.L.1    Ubeyh, E.D.2    Guler, I.3
  • 15
    • 77954612893 scopus 로고    scopus 로고
    • Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection
    • 10.1155/2010/ 853434
    • Liang, S.F., H.C. Wang and W.L. Chang, 2010. Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP J. Adv. Signal Process., 10.1155/2010/ 853434
    • (2010) EURASIP J. Adv. Signal Process
    • Liang, S.F.1    Wang, H.C.2    Chang, W.L.3
  • 17
    • 77956652043 scopus 로고    scopus 로고
    • Epilepsy seizure detection using eigen-system spectral estimation and Multiple Layer Perceptron neural network
    • Naghsh-Nilchi, A.R. and M. Aghashahi, 2010. Epilepsy seizure detection using eigen-system spectral estimation and Multiple Layer Perceptron neural network. Biomed. Signal Process. Control, 5: 147-157.
    • (2010) Biomed. Signal Process. Control , vol.5 , pp. 147-157
    • Naghsh-Nilchi, A.R.1    Aghashahi, M.2
  • 19
    • 77953902704 scopus 로고    scopus 로고
    • Classification of EEG signals for epileptic seizure evaluation
    • April 3-4, 2010, Kharagpur, India
    • Pal, P.R. and R. Panda, 2010. Classification of EEG signals for epileptic seizure evaluation. Proceedings of the IEEE Students Technology Symposium, April 3-4, 2010, Kharagpur, India, pp: 72-76.
    • (2010) Proceedings of the IEEE Students Technology Symposium , pp. 72-76
    • Pal, P.R.1    Panda, R.2
  • 22
    • 84856963277 scopus 로고    scopus 로고
    • Automated epileptic seizure detection in EEG signals using fast ICA and neural network
    • Sivasankari, N. and K. Thanushkodi, 2009. Automated epileptic seizure detection in EEG signals using fast ICA and neural network. Int. J. Adv. Soft Comput. Appli., 1: 1-14.
    • (2009) Int. J. Adv. Soft Comput. Appli , vol.1 , pp. 1-14
    • Sivasankari, N.1    Thanushkodi, K.2
  • 23
    • 78651302006 scopus 로고    scopus 로고
    • A new approach for epileptic seizure detection: Sample entropy based feature extraction and extreme learning machine
    • Song, Y. and P. Lio, 2010. A new approach for epileptic seizure detection: Sample entropy based feature extraction and extreme learning machine. J. Biomed. Sci. Eng., 3: 556-567.
    • (2010) J. Biomed. Sci. Eng , vol.3 , pp. 556-567
    • Song, Y.1    Lio, P.2
  • 24
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi, A., 2007. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appli., 32: 1084-1093.
    • (2007) Expert Syst. Appli , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 26
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and artificial neural networks
    • 10.1155/2007/80510
    • Tzallas, A.T., M.G. Tsipouras and D.I. Fortiadis, 2007. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci., 10.1155/2007/80510
    • (2007) Comput. Intell. Neurosci
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fortiadis, D.I.3
  • 28
    • 58549111381 scopus 로고    scopus 로고
    • Combined neural network model employing wavelet coefficients for EEG signals classification
    • Ubeyli, E.D., 2009. Combined neural network model employing wavelet coefficients for EEG signals classification. Digital Signal Process., 19: 297-308.
    • (2009) Digital Signal Process , vol.19 , pp. 297-308
    • Ubeyli, E.D.1
  • 30
    • 77951626839 scopus 로고    scopus 로고
    • Some highlights on epileptic EEG processing
    • Wang, J. and G. Xu, 2009. Some highlights on epileptic EEG processing. Recent Patents Biomed. Eng., 2: 48-57.
    • (2009) Recent Patents Biomed. Eng , vol.2 , pp. 48-57
    • Wang, J.1    Xu, G.2
  • 31
    • 84863770672 scopus 로고    scopus 로고
    • Detection of epileptic indicators on clinical subbands of EEG
    • August 25-29, 2008, Lausanne, Switzerland
    • Yucel, Z. and A.B. Ozguler, 2008. Detection of epileptic indicators on clinical subbands of EEG. Proceedings of the 16th European Signal Processing Conference, August 25-29, 2008, Lausanne, Switzerland, pp: 1-5.
    • (2008) Proceedings of the 16th European Signal Processing Conference , pp. 1-5
    • Yucel, Z.1    Ozguler, A.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.