-
3
-
-
84873162719
-
-
K-means algorithm, wikipedia. http://en.wikipedia.org/wiki/K- meansclustering.
-
K-means Algorithm
-
-
-
4
-
-
33847164386
-
-
Kdd 99 cup dataset. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99. html.
-
Kdd 99 Cup Dataset
-
-
-
8
-
-
12244261221
-
A generalized maximum entropy approach to bregman co-clustering and matrix approximation
-
ACM
-
A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D.S. Modha. A generalized maximum entropy approach to bregman co-clustering and matrix approximation. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 509-514. ACM, 2004.
-
(2004)
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 509-514
-
-
Banerjee, A.1
Dhillon, I.2
Ghosh, J.3
Merugu, S.4
Modha, D.S.5
-
9
-
-
2942588999
-
Minimum sum-squared residue co-clustering of gene expression data
-
H. Cho, I.S. Dhillon, Y. Guan, and S. Sra. Minimum sum-squared residue co-clustering of gene expression data. In Proceedings of the fourth SIAM international conference on data mining, volume 114, 2004.
-
(2004)
Proceedings of the Fourth SIAM International Conference on Data Mining
, vol.114
-
-
Cho, H.1
Dhillon, I.S.2
Guan, Y.3
Sra, S.4
-
13
-
-
85075837457
-
Botminer: Clustering analysis of network traffic for protocol-and structure-independent botnet detection
-
USENIX Association
-
G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: Clustering analysis of network traffic for protocol-and structure-independent botnet detection. In Proceedings of the 17th conference on Security symposium, pages 139-154. USENIX Association, 2008.
-
(2008)
Proceedings of the 17th Conference on Security Symposium
, pp. 139-154
-
-
Gu, G.1
Perdisci, R.2
Zhang, J.3
Lee, W.4
-
15
-
-
77956201937
-
Metric forensics: A multilevel approach for mining volatile graphs
-
ACM
-
K. Henderson, T. Eliassi-Rad, C. Faloutsos, L. Akoglu, L. Li, K. Maruhashi, B.A. Prakash, and H. Tong. Metric forensics: a multilevel approach for mining volatile graphs. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 163-172. ACM, 2010.
-
(2010)
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 163-172
-
-
Henderson, K.1
Eliassi-Rad, T.2
Faloutsos, C.3
Akoglu, L.4
Li, L.5
Maruhashi, K.6
Prakash, B.A.7
Tong, H.8
-
17
-
-
84868695480
-
Unsupervised anomaly detection in network intrusion detection using clusters
-
Australian Computer Society, Inc
-
K. Leung and C. Leckie. Unsupervised anomaly detection in network intrusion detection using clusters. In Proceedings of the Twenty-eighth Australasian conference on Computer Science-Volume 38, pages 333- 342. Australian Computer Society, Inc., 2005.
-
(2005)
Proceedings of the Twenty-eighth Australasian Conference on Computer Science
, vol.38
, pp. 333-342
-
-
Leung, K.1
Leckie, C.2
-
20
-
-
0028430224
-
Network intrusion detection
-
IEEE
-
B. Mukherjee, L.T. Heberlein, and K.N. Levitt. Network intrusion detection. Network, IEEE, 8(3):26-41, 1994.
-
(1994)
Network
, vol.8
, Issue.3
, pp. 26-41
-
-
Mukherjee, B.1
Heberlein, L.T.2
Levitt, K.N.3
-
22
-
-
79951730879
-
Reviewer profiling using sparse matrix regression
-
IEEE
-
E.E. Papalexakis, N.D. Sidiropoulos, and M.N. Garofalakis. Reviewer profiling using sparse matrix regression. In Data Mining Workshops (ICDMW), 2010 IEEE International Conference on, pages 1214-1219. IEEE, 2010.
-
(2010)
Data Mining Workshops (ICDMW), 2010 IEEE International Conference on
, pp. 1214-1219
-
-
Papalexakis, E.E.1
Sidiropoulos, N.D.2
Garofalakis, M.N.3
-
23
-
-
34250315640
-
An overview of anomaly detection techniques: Existing solutions and latest technological trends
-
A. Patcha and J.M. Park. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 51(12):3448-3470, 2007.
-
(2007)
Computer Networks
, vol.51
, Issue.12
, pp. 3448-3470
-
-
Patcha, A.1
Park, J.M.2
-
26
-
-
0037832491
-
Fuzzy clustering for intrusion detection
-
IEEE
-
H. Shah, J. Undercoffer, and A. Joshi. Fuzzy clustering for intrusion detection. In Fuzzy Systems, 2003. FUZZ'03. The 12th IEEE International Conference on, volume 2, pages 1274-1278. IEEE, 2003.
-
(2003)
Fuzzy Systems, 2003. FUZZ'03. The 12th IEEE International Conference on
, vol.2
, pp. 1274-1278
-
-
Shah, H.1
Undercoffer, J.2
Joshi, A.3
|