-
1
-
-
0027453616
-
Model-based Gaussian and non-Gaussian clustering
-
Banfield JD, Raftery AE (1993) Model-based Gaussian and non-Gaussian clustering. Biometrics 49: 803-821.
-
(1993)
Biometrics
, vol.49
, pp. 803-821
-
-
Banfield, J.D.1
Raftery, A.E.2
-
2
-
-
0035989821
-
A generalized discriminant rule when training population and test population differ on their descriptive parameters
-
Biernacki C, Beninel F, Bretagnolle V (2002) A generalized discriminant rule when training population and test population differ on their descriptive parameters. Biometrics 58(2): 387-397.
-
(2002)
Biometrics
, vol.58
, Issue.2
, pp. 387-397
-
-
Biernacki, C.1
Beninel, F.2
Bretagnolle, V.3
-
4
-
-
0029305528
-
Gaussian parsimonious clustering models
-
Celeux G, Govaert G (1995) Gaussian parsimonious clustering models. Pattern Recognit 28(5): 781-793.
-
(1995)
Pattern Recognit
, vol.28
, Issue.5
, pp. 781-793
-
-
Celeux, G.1
Govaert, G.2
-
6
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm (with discussion)
-
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J Royal Stat Soc B 39: 1-38.
-
(1977)
J Royal Stat Soc B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
7
-
-
84874199266
-
Dynamic analysis of the business failure process: a study of bankruptcy trajectories
-
Ponte Delgada
-
Du Jardin P, Séverin E (2010) Dynamic analysis of the business failure process: a study of bankruptcy trajectories. In: Portuguese finance network, Ponte Delgada.
-
(2010)
In: Portuguese finance network
-
-
Du Jardin, P.1
Séverin, E.2
-
8
-
-
0000643180
-
Common principal components in k groups
-
Flury BN (1983) Common principal components in k groups. J Am Stat Assoc 79: 892-898.
-
(1983)
J Am Stat Assoc
, vol.79
, pp. 892-898
-
-
Flury, B.N.1
-
9
-
-
0032269108
-
How many clusters? Which clustering method? Answers via model-based cluster analysis
-
Fraley C, Raftery AE (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41: 578-588.
-
(1998)
Comput J
, vol.41
, pp. 578-588
-
-
Fraley, C.1
Raftery, A.E.2
-
10
-
-
39149141568
-
Block clustering with mixture models: comparison of different approaches
-
Govaert G, Nadif M (2008) Block clustering with mixture models: comparison of different approaches. Comput Stat Data Anal 52: 3233-3245.
-
(2008)
Comput Stat Data Anal
, vol.52
, pp. 3233-3245
-
-
Govaert, G.1
Nadif, M.2
-
11
-
-
0001886818
-
Generalized procrustes analysis
-
Gower JC (1975) Generalized procrustes analysis. Psychometrika 40: 33-51.
-
(1975)
Psychometrika
, vol.40
, pp. 33-51
-
-
Gower, J.C.1
-
12
-
-
70349465349
-
Le critère bic, fondements théoriques et interprétation
-
Lebarbier E, Mary-Huard T (2006) Le critère bic, fondements théoriques et interprétation. J Soc Francaise Stat 1: 39-57.
-
(2006)
J Soc Francaise Stat
, vol.1
, pp. 39-57
-
-
Lebarbier, E.1
Mary-Huard, T.2
-
13
-
-
84874214663
-
Contribution à la classification par modèles de mélange et classification simultanée d'echantillons d'origines multiples
-
PhD thesis, Laboratoire Paul Painlevé, Université des Sciences et Techniques Lille 1
-
Lourme A (2011) Contribution à la classification par modèles de mélange et classification simultanée d'echantillons d'origines multiples. PhD thesis, Laboratoire Paul Painlevé, Université des Sciences et Techniques Lille 1.
-
(2011)
-
-
Lourme, A.1
-
16
-
-
21744460005
-
Practical Bayesian density estimation using mixtures of normals
-
Roeder K, Wasserman L (1997) Practical Bayesian density estimation using mixtures of normals. J Am Stat Assoc 92: 894-902.
-
(1997)
J Am Stat Assoc
, vol.92
, pp. 894-902
-
-
Roeder, K.1
Wasserman, L.2
-
18
-
-
0030157754
-
Mixture distributions in human genetics
-
Schork N, Thiel B (1996) Mixture distributions in human genetics. Stat Methods Med Res 39: 155-178.
-
(1996)
Stat Methods Med Res
, vol.39
, pp. 155-178
-
-
Schork, N.1
Thiel, B.2
-
19
-
-
0000120766
-
Estimating the number of components in a finite mixture model
-
Schwarz G (1978) Estimating the number of components in a finite mixture model. Ann Stat 6: 461-464.
-
(1978)
Ann Stat
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
21
-
-
84879512217
-
Hierarchical mixture models for nested data structures
-
C. Weihs and W. Gaul (Eds.), Heidelberg: Springer
-
Vermunt J, Magidson J (2005) Hierarchical mixture models for nested data structures. In: Weihs C, Gaul W (eds) Classification: the ubiquitous challenge, Wiley. Springer, Heidelberg.
-
(2005)
Classification: The Ubiquitous Challenge, Wiley
-
-
Vermunt, J.1
Magidson, J.2
|