메뉴 건너뛰기




Volumn , Issue , 2012, Pages 942-947

A semi-definite positive Linear Discriminant Analysis and its applications

Author keywords

Kernel LDA; LDA; Multi class; Multilabel; Semi definite positive

Indexed keywords

KERNEL LDA; LDA; MULTI-CLASS; MULTI-LABEL; SEMI-DEFINITE POSITIVE;

EID: 84874077173     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2012.111     Document Type: Conference Paper
Times cited : (7)

References (28)
  • 1
    • 84874071959 scopus 로고    scopus 로고
    • Distance metric learning vs. fisher discriminant analysis
    • B. Alipanahi, M. Biggs, and A. Ghodsi. Distance metric learning vs. fisher discriminant analysis. In AAAI, 2008.
    • (2008) AAAI
    • Alipanahi, B.1    Biggs, M.2    Ghodsi, A.3
  • 2
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, pages 585-591, 2001.
    • (2001) NIPS , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 35148833127 scopus 로고    scopus 로고
    • Integrating global and local structures: A least squares framework for dimensionality reduction
    • J. Chen, J. Ye, and Q. Li. Integrating global and local structures: A least squares framework for dimensionality reduction. In CVPR, 2007.
    • (2007) CVPR
    • Chen, J.1    Ye, J.2    Li, Q.3
  • 6
    • 0034300875 scopus 로고    scopus 로고
    • A new lda-based face recognition system which can solve the small sample size problem
    • October
    • L. Chen, H. Liao, M. Ko, J. Lin, and G. Yu. A new lda-based face recognition system which can solve the small sample size problem. Pattern Recognition, 33(10):1713-1726, October 2000.
    • (2000) Pattern Recognition , vol.33 , Issue.10 , pp. 1713-1726
    • Chen, L.1    Liao, H.2    Ko, M.3    Lin, J.4    Yu, G.5
  • 8
    • 50649119439 scopus 로고    scopus 로고
    • Non-metric affinity propagation for unsupervised image categorization
    • D. Dueck and B. J. Frey. Non-metric affinity propagation for unsupervised image categorization. In ICCV, 2007.
    • (2007) ICCV
    • Dueck, D.1    Frey, B.J.2
  • 11
    • 1342310014 scopus 로고    scopus 로고
    • Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition
    • P. Howland, M. Jeon, and H. Park. Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 25:165-179, 2003.
    • (2003) SIAM Journal on Matrix Analysis and Applications , vol.25 , pp. 165-179
    • Howland, P.1    Jeon, M.2    Park, H.3
  • 12
    • 84866863028 scopus 로고    scopus 로고
    • Maximum consistency preferential
    • random walks
    • D. Kong and C. H. Q. Ding. Maximum consistency preferential random walks. In ECML/PKDD (2), pages 339-354, 2012.
    • (2012) ECML/PKDD , vol.2 , pp. 339-354
    • Kong, D.1    Ding, C.H.Q.2
  • 13
    • 83055187059 scopus 로고    scopus 로고
    • Robust nonnegative matrix factorization using l21-norm
    • D. Kong, C. H. Q. Ding, and H. Huang. Robust nonnegative matrix factorization using l21-norm. In CIKM, pages 673-682, 2011.
    • (2011) CIKM , pp. 673-682
    • Kong, D.1    Ding, C.H.Q.2    Huang, H.3
  • 15
    • 84866673280 scopus 로고    scopus 로고
    • Multi-label relieff and f-statistic feature selections for image annotation
    • D. Kong, C. H. Q. Ding, H. Huang, and H. Zhao. Multi-label relieff and f-statistic feature selections for image annotation. In CVPR, pages 2352-2359, 2012.
    • (2012) CVPR , pp. 2352-2359
    • Kong, D.1    Ding, C.H.Q.2    Huang, H.3    Zhao, H.4
  • 17
    • 68849114784 scopus 로고    scopus 로고
    • Foreground focus: Unsupervised learning from partially matching images
    • Y. J. Lee and K. Grauman. Foreground focus: Unsupervised learning from partially matching images. International Journal of Computer Vision, 85(2):143-166, 2009.
    • (2009) International Journal of Computer Vision , vol.85 , Issue.2 , pp. 143-166
    • Lee, Y.J.1    Grauman, K.2
  • 19
    • 85024125080 scopus 로고    scopus 로고
    • Linear discriminant analysis: New formulations and overfit analysis
    • D. Luo, C. Ding, and H. Huang. Linear discriminant analysis: New formulations and overfit analysis. In AAAI, 2011.
    • (2011) AAAI
    • Luo, D.1    Ding, C.2    Huang, H.3
  • 20
    • 4043176922 scopus 로고    scopus 로고
    • Dimensional representation of text data based on centroids and least squares
    • 2003
    • H. Park, L. M. Jeon, and J. B. R. Z. Lower dimensional representation of text data based on centroids and least squares. BIT, 43:2003, 2003.
    • (2003) BIT , vol.43
    • Park, H.1    Jeon, L.M.2    Lower, J.B.R.Z.3
  • 24
    • 21844447839 scopus 로고    scopus 로고
    • Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems
    • 6, December
    • J. Ye. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. The Journal of Machine Learning Research, 6, December 2005.
    • (2005) The Journal of Machine Learning Research
    • Ye, J.1
  • 25
    • 21844447839 scopus 로고    scopus 로고
    • Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems
    • Apr
    • J. Ye. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. Journal of Machine Learning, 6:483-502, Apr 2005.
    • (2005) Journal of Machine Learning , vol.6 , pp. 483-502
    • Ye, J.1
  • 26
    • 35148873455 scopus 로고    scopus 로고
    • Least squares linear discriminant analysis
    • J. Ye. Least squares linear discriminant analysis. In ICML, 2007.
    • (2007) ICML
    • Ye, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.