-
1
-
-
84874071959
-
Distance metric learning vs. fisher discriminant analysis
-
B. Alipanahi, M. Biggs, and A. Ghodsi. Distance metric learning vs. fisher discriminant analysis. In AAAI, 2008.
-
(2008)
AAAI
-
-
Alipanahi, B.1
Biggs, M.2
Ghodsi, A.3
-
2
-
-
0043278893
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, pages 585-591, 2001.
-
(2001)
NIPS
, pp. 585-591
-
-
Belkin, M.1
Niyogi, P.2
-
3
-
-
33846516584
-
-
Springer-Verlag New York, Inc., Secaucus, NJ, USA
-
C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
-
(2006)
Pattern Recognition and Machine Learning (Information Science and Statistics)
-
-
Bishop, C.M.1
-
5
-
-
35148833127
-
Integrating global and local structures: A least squares framework for dimensionality reduction
-
J. Chen, J. Ye, and Q. Li. Integrating global and local structures: A least squares framework for dimensionality reduction. In CVPR, 2007.
-
(2007)
CVPR
-
-
Chen, J.1
Ye, J.2
Li, Q.3
-
6
-
-
0034300875
-
A new lda-based face recognition system which can solve the small sample size problem
-
October
-
L. Chen, H. Liao, M. Ko, J. Lin, and G. Yu. A new lda-based face recognition system which can solve the small sample size problem. Pattern Recognition, 33(10):1713-1726, October 2000.
-
(2000)
Pattern Recognition
, vol.33
, Issue.10
, pp. 1713-1726
-
-
Chen, L.1
Liao, H.2
Ko, M.3
Lin, J.4
Yu, G.5
-
8
-
-
50649119439
-
Non-metric affinity propagation for unsupervised image categorization
-
D. Dueck and B. J. Frey. Non-metric affinity propagation for unsupervised image categorization. In ICCV, 2007.
-
(2007)
ICCV
-
-
Dueck, D.1
Frey, B.J.2
-
10
-
-
0003684449
-
-
Springer
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
11
-
-
1342310014
-
Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition
-
P. Howland, M. Jeon, and H. Park. Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 25:165-179, 2003.
-
(2003)
SIAM Journal on Matrix Analysis and Applications
, vol.25
, pp. 165-179
-
-
Howland, P.1
Jeon, M.2
Park, H.3
-
12
-
-
84866863028
-
Maximum consistency preferential
-
random walks
-
D. Kong and C. H. Q. Ding. Maximum consistency preferential random walks. In ECML/PKDD (2), pages 339-354, 2012.
-
(2012)
ECML/PKDD
, vol.2
, pp. 339-354
-
-
Kong, D.1
Ding, C.H.Q.2
-
13
-
-
83055187059
-
Robust nonnegative matrix factorization using l21-norm
-
D. Kong, C. H. Q. Ding, and H. Huang. Robust nonnegative matrix factorization using l21-norm. In CIKM, pages 673-682, 2011.
-
(2011)
CIKM
, pp. 673-682
-
-
Kong, D.1
Ding, C.H.Q.2
Huang, H.3
-
15
-
-
84866673280
-
Multi-label relieff and f-statistic feature selections for image annotation
-
D. Kong, C. H. Q. Ding, H. Huang, and H. Zhao. Multi-label relieff and f-statistic feature selections for image annotation. In CVPR, pages 2352-2359, 2012.
-
(2012)
CVPR
, pp. 2352-2359
-
-
Kong, D.1
Ding, C.H.Q.2
Huang, H.3
Zhao, H.4
-
16
-
-
0032203257
-
Gradientbased learning applied to document recognition
-
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. In Proceedings of the IEEE, pages 2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
17
-
-
68849114784
-
Foreground focus: Unsupervised learning from partially matching images
-
Y. J. Lee and K. Grauman. Foreground focus: Unsupervised learning from partially matching images. International Journal of Computer Vision, 85(2):143-166, 2009.
-
(2009)
International Journal of Computer Vision
, vol.85
, Issue.2
, pp. 143-166
-
-
Lee, Y.J.1
Grauman, K.2
-
19
-
-
85024125080
-
Linear discriminant analysis: New formulations and overfit analysis
-
D. Luo, C. Ding, and H. Huang. Linear discriminant analysis: New formulations and overfit analysis. In AAAI, 2011.
-
(2011)
AAAI
-
-
Luo, D.1
Ding, C.2
Huang, H.3
-
20
-
-
4043176922
-
Dimensional representation of text data based on centroids and least squares
-
2003
-
H. Park, L. M. Jeon, and J. B. R. Z. Lower dimensional representation of text data based on centroids and least squares. BIT, 43:2003, 2003.
-
(2003)
BIT
, vol.43
-
-
Park, H.1
Jeon, L.M.2
Lower, J.B.R.Z.3
-
21
-
-
84899008974
-
Efficient kernel discriminant analysis VIA QR decomposition
-
X. Tao, J. Ye, Q. Li, R. Janardan, and V. Cherkassky. Efficient kernel discriminant analysis via qr decomposition. In The Eighteenth Annual Conference on Neural Information Processing Systems (NIPS 2004), pages 1529-1536, 2004.
-
(2004)
The Eighteenth Annual Conference on Neural Information Processing Systems (NIPS 2004)
, pp. 1529-1536
-
-
Tao, X.1
Ye, J.2
Li, Q.3
Janardan, R.4
Cherkassky, V.5
-
23
-
-
19944428028
-
Immc: Incremental maximum margin criterion
-
J. Yan, B. Zhang, S. Yan, Q. Yang, and H. Li. Immc: incremental maximum margin criterion. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004.
-
(2004)
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
-
Yan, J.1
Zhang, B.2
Yan, S.3
Yang, Q.4
Li, H.5
-
24
-
-
21844447839
-
Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems
-
6, December
-
J. Ye. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. The Journal of Machine Learning Research, 6, December 2005.
-
(2005)
The Journal of Machine Learning Research
-
-
Ye, J.1
-
25
-
-
21844447839
-
Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems
-
Apr
-
J. Ye. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. Journal of Machine Learning, 6:483-502, Apr 2005.
-
(2005)
Journal of Machine Learning
, vol.6
, pp. 483-502
-
-
Ye, J.1
-
26
-
-
35148873455
-
Least squares linear discriminant analysis
-
J. Ye. Least squares linear discriminant analysis. In ICML, 2007.
-
(2007)
ICML
-
-
Ye, J.1
|