메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1074-1079

Granger causality for time-series anomaly detection

Author keywords

Anomaly detection; Time series analysis

Indexed keywords

ANOMALY DETECTION; ANOMALY-DETECTION ALGORITHMS; BETTER PERFORMANCE; GRANGER CAUSALITY; GRAPHICAL MODEL; HIGH DIMENSIONS; INDUSTRIAL SYSTEMS; LARGE AMOUNTS; LARGE-SCALE APPLICATIONS; PHYSICAL MEASUREMENT; SCALABLE APPROACH; TIME-SERIES DATA;

EID: 84874067601     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2012.73     Document Type: Conference Paper
Times cited : (89)

References (16)
  • 1
    • 36949024697 scopus 로고    scopus 로고
    • Temporal causal modeling with graphical Granger methods
    • A. Arnold, Y. Liu, and N. Abe. Temporal causal modeling with graphical Granger methods. In Proc. of SIGKDD, 2007.
    • (2007) Proc. of SIGKDD
    • Arnold, A.1    Liu, Y.2    Abe, N.3
  • 2
    • 33846333019 scopus 로고    scopus 로고
    • Stochastic subgradient methods
    • Stanford University, Spring quarter 2007-2008
    • S. Boyd. Stochastic subgradient methods. Lecture slides and notes for EE364b. Stanford University, Spring quarter 2007-2008.
    • Lecture Slides and Notes for EE364b
    • Boyd, S.1
  • 3
    • 80053451705 scopus 로고    scopus 로고
    • Parallel coordinate descent for L1-regularized loss minimization
    • J. Bradley, A. Kyrola, D. Bickson and C. Guestrin. Parallel Coordinate Descent for L1-Regularized Loss Minimization. In ICML, 2011.
    • (2011) ICML
    • Bradley, J.1    Kyrola, A.2    Bickson, D.3    Guestrin, C.4
  • 4
    • 3042795832 scopus 로고    scopus 로고
    • Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by granger causality
    • A. Brovelli, M. Ding, A. Ledberg, Y. Chen, R. Nakamura, and S. L. Bressler. Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by granger causality. In Proc. of PNAS, 101(26):9849-9854, 2004.
    • (2004) Proc. of PNAS , vol.101 , Issue.26 , pp. 9849-9854
    • Brovelli, A.1    Ding, M.2    Ledberg, A.3    Chen, Y.4    Nakamura, R.5    Bressler, S.L.6
  • 6
    • 0037470096 scopus 로고    scopus 로고
    • Process monitoring using causal map and multivariate statistics: Fault detection and identification
    • L. Chiang and R. Braatz. Process monitoring using causal map and multivariate statistics: fault detection and identification. Chemometrics and Intelligent Laboratory Systems, 65(2):159-178, 2003.
    • (2003) Chemometrics and Intelligent Laboratory Systems , vol.65 , Issue.2 , pp. 159-178
    • Chiang, L.1    Braatz, R.2
  • 9
    • 84874066887 scopus 로고    scopus 로고
    • An anomaly detection method for spacecraft using relevance vector learning
    • R. Fujimaki, T. Yairi, and K. Machida. An anomaly detection method for spacecraft using relevance vector learning. In PAKDD, 2005.
    • (2005) PAKDD
    • Fujimaki, R.1    Yairi, T.2    Machida, K.3
  • 10
    • 49749143714 scopus 로고    scopus 로고
    • Computing correlation anomaly scores using stochastic nearest neighbors
    • T. Idé, S. Papadimitriou, and M. Vlachos. Computing correlation anomaly scores using stochastic nearest neighbors. In ICDM, 2007.
    • (2007) ICDM
    • Idé, T.1    Papadimitriou, S.2    Vlachos, M.3
  • 11
    • 34548547034 scopus 로고    scopus 로고
    • Hot sax: Efficiently finding the most unusual time series subsequence
    • E. Keogh and J. Lin, and A. Fu. Hot sax: Efficiently finding the most unusual time series subsequence. In Proc. of ICDM, 2005.
    • (2005) Proc. of ICDM
    • Keogh, E.1    Lin, J.2    Fu, A.3
  • 13
    • 71149119963 scopus 로고    scopus 로고
    • Stochastic methods for l1-regularized loss minimization
    • S. Shalev-Shwartz and A. Tewari. Stochastic Methods for l1-regularized Loss Minimization. In Proc. of ICML, 2009.
    • (2009) Proc. of ICML
    • Shalev-Shwartz, S.1    Tewari, A.2
  • 15
    • 33644653840 scopus 로고    scopus 로고
    • A unifying framework for detecting outliers and change points from time series
    • J.-i. Takeuchi and K. Yamanishi. A unifying framework for detecting outliers and change points from time series. IEEE Trans. on Knowl. and Data Eng., 18:482-492, 2006.
    • (2006) IEEE Trans. on Knowl. and Data Eng. , vol.18 , pp. 482-492
    • Takeuchi, J.-I.1    Yamanishi, K.2
  • 16
    • 80053452150 scopus 로고    scopus 로고
    • Bayesian learning via stochastic gradient langevin dynamics
    • M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proc. of ICML, 2011.
    • (2011) Proc. of ICML
    • Welling, M.1    The, Y.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.