-
1
-
-
36949024697
-
Temporal causal modeling with graphical Granger methods
-
A. Arnold, Y. Liu, and N. Abe. Temporal causal modeling with graphical Granger methods. In Proc. of SIGKDD, 2007.
-
(2007)
Proc. of SIGKDD
-
-
Arnold, A.1
Liu, Y.2
Abe, N.3
-
2
-
-
33846333019
-
Stochastic subgradient methods
-
Stanford University, Spring quarter 2007-2008
-
S. Boyd. Stochastic subgradient methods. Lecture slides and notes for EE364b. Stanford University, Spring quarter 2007-2008.
-
Lecture Slides and Notes for EE364b
-
-
Boyd, S.1
-
3
-
-
80053451705
-
Parallel coordinate descent for L1-regularized loss minimization
-
J. Bradley, A. Kyrola, D. Bickson and C. Guestrin. Parallel Coordinate Descent for L1-Regularized Loss Minimization. In ICML, 2011.
-
(2011)
ICML
-
-
Bradley, J.1
Kyrola, A.2
Bickson, D.3
Guestrin, C.4
-
4
-
-
3042795832
-
Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by granger causality
-
A. Brovelli, M. Ding, A. Ledberg, Y. Chen, R. Nakamura, and S. L. Bressler. Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by granger causality. In Proc. of PNAS, 101(26):9849-9854, 2004.
-
(2004)
Proc. of PNAS
, vol.101
, Issue.26
, pp. 9849-9854
-
-
Brovelli, A.1
Ding, M.2
Ledberg, A.3
Chen, Y.4
Nakamura, R.5
Bressler, S.L.6
-
6
-
-
0037470096
-
Process monitoring using causal map and multivariate statistics: Fault detection and identification
-
L. Chiang and R. Braatz. Process monitoring using causal map and multivariate statistics: fault detection and identification. Chemometrics and Intelligent Laboratory Systems, 65(2):159-178, 2003.
-
(2003)
Chemometrics and Intelligent Laboratory Systems
, vol.65
, Issue.2
, pp. 159-178
-
-
Chiang, L.1
Braatz, R.2
-
9
-
-
84874066887
-
An anomaly detection method for spacecraft using relevance vector learning
-
R. Fujimaki, T. Yairi, and K. Machida. An anomaly detection method for spacecraft using relevance vector learning. In PAKDD, 2005.
-
(2005)
PAKDD
-
-
Fujimaki, R.1
Yairi, T.2
Machida, K.3
-
10
-
-
49749143714
-
Computing correlation anomaly scores using stochastic nearest neighbors
-
T. Idé, S. Papadimitriou, and M. Vlachos. Computing correlation anomaly scores using stochastic nearest neighbors. In ICDM, 2007.
-
(2007)
ICDM
-
-
Idé, T.1
Papadimitriou, S.2
Vlachos, M.3
-
11
-
-
34548547034
-
Hot sax: Efficiently finding the most unusual time series subsequence
-
E. Keogh and J. Lin, and A. Fu. Hot sax: Efficiently finding the most unusual time series subsequence. In Proc. of ICDM, 2005.
-
(2005)
Proc. of ICDM
-
-
Keogh, E.1
Lin, J.2
Fu, A.3
-
13
-
-
71149119963
-
Stochastic methods for l1-regularized loss minimization
-
S. Shalev-Shwartz and A. Tewari. Stochastic Methods for l1-regularized Loss Minimization. In Proc. of ICML, 2009.
-
(2009)
Proc. of ICML
-
-
Shalev-Shwartz, S.1
Tewari, A.2
-
15
-
-
33644653840
-
A unifying framework for detecting outliers and change points from time series
-
J.-i. Takeuchi and K. Yamanishi. A unifying framework for detecting outliers and change points from time series. IEEE Trans. on Knowl. and Data Eng., 18:482-492, 2006.
-
(2006)
IEEE Trans. on Knowl. and Data Eng.
, vol.18
, pp. 482-492
-
-
Takeuchi, J.-I.1
Yamanishi, K.2
-
16
-
-
80053452150
-
Bayesian learning via stochastic gradient langevin dynamics
-
M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proc. of ICML, 2011.
-
(2011)
Proc. of ICML
-
-
Welling, M.1
The, Y.W.2
|